![2022-2023学年江苏省海安九年级数学第一学期期末综合测试模拟试题含解析_第1页](http://file4.renrendoc.com/view2/M01/18/12/wKhkFmaJ3p2AX0uRAAJbr3J4ijM065.jpg)
![2022-2023学年江苏省海安九年级数学第一学期期末综合测试模拟试题含解析_第2页](http://file4.renrendoc.com/view2/M01/18/12/wKhkFmaJ3p2AX0uRAAJbr3J4ijM0652.jpg)
![2022-2023学年江苏省海安九年级数学第一学期期末综合测试模拟试题含解析_第3页](http://file4.renrendoc.com/view2/M01/18/12/wKhkFmaJ3p2AX0uRAAJbr3J4ijM0653.jpg)
![2022-2023学年江苏省海安九年级数学第一学期期末综合测试模拟试题含解析_第4页](http://file4.renrendoc.com/view2/M01/18/12/wKhkFmaJ3p2AX0uRAAJbr3J4ijM0654.jpg)
![2022-2023学年江苏省海安九年级数学第一学期期末综合测试模拟试题含解析_第5页](http://file4.renrendoc.com/view2/M01/18/12/wKhkFmaJ3p2AX0uRAAJbr3J4ijM0655.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.将抛物线先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A. B. C. D.2.设计一个摸球游戏,先在一个不透明的盒子中放入个白球,如果希望从中任意摸出个球是白球的概率为,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)()A. B. C. D.3.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是()A.1 B.2 C. D.24.一个正比例函数的图象过点(2,﹣3),它的表达式为()A. B. C. D.5.抛物线y=(x+1)2+2的顶点()A.(﹣1,2)B.(2,1)C.(1,2)D.(﹣1,﹣2)6.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是()A.8或6 B.10或8 C.10 D.87.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度是()A.4cm B.3cm C.2cm D.1cm8.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小 B.不可能摸出白球C.一定能摸出红球 D.摸出红球的可能性最大9.已知二次函数(是常数),下列结论正确的是()A.当时,函数图象经过点B.当时,函数图象与轴没有交点C.当时,函数图象的顶点始终在轴下方D.当时,则时,随的增大而增大.10.二次函数y=x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.3二、填空题(每小题3分,共24分)11.如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点.若,则的面积为__________.12.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过第_____象限.13.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.14.平面直角坐标系xOy中,若点P在曲线y=上,连接OP,则OP的最小值为_____.15.已知一列分式,,,,,,…,观察其规律,则第n个分式是_______.16.如图,平行四边形中,,,,点E在AD上,且AE=4,点是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接DG,则线段DG的最小值为____________________.17.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.18.如图,在中,,于,已知,则__________.三、解答题(共66分)19.(10分)已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.(1)求证:△ABM∽△MCD;(2)若AD=8,AB=5,求ME的长.20.(6分)如图,已知一次函数y1=﹣x+a与x轴、y轴分别交于点D、C两点和反比例函数交于A、B两点,且点A的坐标是(1,3),点B的坐标是(3,m)(1)求a,k,m的值;(2)求C、D两点的坐标,并求△AOB的面积.21.(6分)如图,△ABC的角平分线BD=1,∠ABC=120°,∠A、∠C所对的边记为a、c.(1)当c=2时,求a的值;(2)求△ABC的面积(用含a,c的式子表示即可);(3)求证:a,c之和等于a,c之积.22.(8分)已知布袋中有红、黄、蓝色小球各一个,用画树状图或列表的方法求下列事件的概率.(1)如果摸出第一个球后,不放回,再摸出第二球,求摸出的球颜色是“一黄一蓝”的概率.(2)随机从中摸出一个小球,记录下球的颜色后,把球放回,然后再摸出一个球,记录下球的颜色,求得到的球颜色是“一黄一蓝”的概率.23.(8分)某养猪场对猪舍进行喷药消毒.在消毒的过程中,先经过的药物集中喷洒,再封闭猪舍,然后再打开窗户进行通风.已知室内每立方米空气中含药量()与药物在空气中的持续时间()之间的函数图象如图所示,其中在打开窗户通风前与分别满足两个一次函数,在通风后与满足反比例函数.(1)求反比例函数的关系式;(2)当猪舍内空气中含药量不低于且持续时间不少于,才能有效杀死病毒,问此次消毒是否有效?24.(8分)如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)写出D点坐标;(2)求双曲线的解析式;(3)作直线AC交y轴于点E,连结DE,求△CDE的面积.25.(10分)已知关于x的一元二次方程有两个不相等的实数根,求m的取值范围.26.(10分)阅读材料,解答问题:观察下列方程:①;②;③;…;(1)按此规律写出关于x的第4个方程为,第n个方程为;(2)直接写出第n个方程的解,并检验此解是否正确.
参考答案一、选择题(每小题3分,共30分)1、A【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线先向左平移1个单位得到解析式:,再向上平移2个单位得到抛物线的解析式为:.
故选:.【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减.2、A【分析】利用概率公式,根据白球个数和摸出个球是白球的概率可求得盒子中应有的球的个数,再减去白球的个数即可求得结果.【详解】解:∵盒子中放入了2个白球,从盒子中任意摸出个球是白球的概率为,∴盒子中球的总数=,∴其他颜色的球的个数为6−2=4,故选:A.【点睛】本题考查了概率公式的应用,灵活运用概率=所求情况数与总情况数之比是解题的关键.3、B【分析】作OE⊥AD于E,连接OD,在Rt△ODE中,根据垂径定理和勾股定理即可求解.【详解】解:作OE⊥AD于E,连接OD,则OD=.在Rt△ODE中,易得∠EDO为45,△ODE为等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B选项是正确的.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用垂径定理与勾股定理即可解决问题.4、A【分析】根据待定系数法求解即可.【详解】解:设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.【点睛】本题考查了利用待定系数法求正比例函数的解析式,属于基础题型,熟练掌握待定系数法求解的方法是解题关键.5、A【解析】由抛物线顶点坐标公式[]y=a(x﹣h)2+k中顶点坐标为(h,k)]进行求解.【详解】解:∵y=(x+1)2+2,∴抛物线顶点坐标为(﹣1,2),故选:A.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为直线x=h.6、B【分析】分两种情况:①16为斜边长;②16和12为两条直角边长,由勾股定理易求得此直角三角形的斜边长,进而可求得外接圆的半径.【详解】解:由勾股定理可知:①当直角三角形的斜边长为16时,这个三角形的外接圆半径为8;②当两条直角边长分别为16和12,则直角三角形的斜边长=因此这个三角形的外接圆半径为1.综上所述:这个三角形的外接圆半径等于8或1.故选:B.【点睛】本题考查的是三角形的外接圆与外心,掌握直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆是解题的关键.7、B【分析】过点O作OM⊥DE于点M,连接OD,根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的两条弧”和勾股定理进行计算,即可求出答案.【详解】过点O作OM⊥DE于点M,连接OD.∴DE=12∵DE=8cm,∴DM=4cm,在Rt△ODM中,∵OD=OC=5cm,∴OM=∴直尺的宽度为3cm.故答案选B.【点睛】本题主要考查了垂径定理和勾股定理,灵活运用这些定理是解答本题的关键.8、D【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,
∴摸出黑球的概率是,
摸出白球的概率是,
摸出红球的概率是,
∵<<,
∴从中任意摸出1个球,摸出红球的可能性最大;
故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.9、D【分析】将和点代入函数解析式即可判断A选项;利用可以判断B选项;根据顶点公式可判断C选项;根据抛物线的增减性质可判断D选项.【详解】A.将和代入,故A选项错误;B.当时,二次函数为,,函数图象与轴有一个交点,故B选项错误;C.函数图象的顶点坐标为,即,当时,不一定小于0,则顶点不一定在轴下方,故C选项错误;D.当时,抛物线开口向上,由C选项得,函数图象的对称轴为,所以时,随的增大而增大,故D选项正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、根的判别式以及抛物线与x轴的交点,掌握抛物线的对称轴、开口方向与系数之间的关系是解题的关键.10、B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.二、填空题(每小题3分,共24分)11、【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【详解】∵旋转后AC的中点恰好与D点重合,
即AD=AC′=AC,
∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,
∴∠DAD′=60°,
∴∠DAE=30°,
∴∠EAC=∠ACD=30°,
∴AE=CE,
在Rt△ADE中,设AE=EC=x,∵AB=CD=6
∴DE=DC-EC=AB-EC=6-x,AD=CD×tan∠ACD=×6=2,
根据勾股定理得:x2=(6-x)2+(2)2,
解得:x=4,
∴EC=4,
则S△AEC=EC•AD=4故答案为:4【点睛】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.12、一【分析】由二次函数解析式表示出顶点坐标,根据图形得到顶点在第四象限,求出m与n的正负,即可作出判断.【详解】根据题意得:抛物线的顶点坐标为(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,则一次函数y=mx+n不经过第一象限.故答案为:一.【点睛】此题考查了二次函数与一次函数图象与系数的关系,熟练掌握二次函数及一次函数的图象与性质是解本题的关键.13、【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为=,故答案为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.14、1【分析】设点P(a,b),根据反比例函数图象上点的坐标特征可得=18,根据=,且≥2ab,可求OP的最小值.【详解】解:设点P(a,b)∵点P在曲线y=上,∴=18∵≥0,∴≥2ab,∵=,且≥2ab,∴≥2ab=31,∴OP最小值为1.【点睛】本题考查了反比例函数图象上点的坐标特征,灵活运用≥2ab是本题的关键.15、【分析】分别找出符号,分母,分子的规律,从而得出第n个分式的式子.【详解】观察发现符号规律为:正负间或出现,故第n项的符号为:分母规律为:y的次序依次增加2、3、4等等,故第n项为:=分子规律为:x的次数为对应项的平方加1,故第n项为:故答案为:.【点睛】本题考查找寻规律,需要注意,除了寻找数字规律外,我们还要寻找符号规律.16、【分析】结合已知条件,作出辅助线,通过全等得出ME=GN,且随着点F的移动,ME的长度不变,从而确定当点N与点D重合时,使线段DG最小.【详解】解:如图所示,过点E做EM⊥AB交BA延长线于点M,过点G作GN⊥AD交AD于点N,∴∠EMF=∠GNE=90°∵四边形ABCD是平行四边形,BC=12∴AD∥BC,AD=BC=12,∴∠BAD=120°,∴∠AFE+∠AEF=60°又∵EG为EF逆时针旋转120°所得,∴∠FEG=120°,EF=EG,∴∠AEF+∠GEN=60°,∴∠AFE=∠GEN,∴在△EMF与△GNE中,∠AFE=∠GEN,∠EMF=∠GNE=90°,EF=EG,∴△EMF≌△GNE(AAS)∴ME=GN又∵∠EAM=∠B=60°,AE=4,∴∠AEM=30°,,,∴,∴当点N与点D重合时,使线段DG最小,如图所示,此时,故答案为:.【点睛】本题考查了平行四边形的性质、旋转的性质、全等三角形的构造、几何中的动点问题,解题的关键是作出辅助线,得到全等三角形,并发现当点N与点D重合时,使线段DG最小.17、1【分析】根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径.【详解】解:根据勾股定理得:斜边为=17,设内切圆半径为r,由面积法r=3(步),即直径为1步,
故答案为:1.考点:三角形的内切圆与内心.18、【分析】根据,可设AC=4x,BC=5x,利用勾股定理可得AB=3x,则.【详解】在Rt△ABC中,∵∴设AC=4x,BC=5x∴∴故答案为:.【点睛】本题考查求正切值,熟练掌握三角函数的定义是解题的关键.三、解答题(共66分)19、(1)证明见解析(2)4【分析】(1)由AD为直径,得到所对的圆周角为直角,利用等角的余角相等得到一对角相等,进而利用两对角对应相等的三角形相似即可得证;(2)连接OM,由BC为圆的切线,得到OM与BC垂直,利用锐角三角函数定义及勾股定理即可求出所求.【详解】解:(1)∵AD为圆O的直径,∴∠AMD=90°.∵∠BMC=180°,∴∠2+∠3=90°.∵∠ABM=∠MCD=90°,∴∠2+∠1=90°,∴∠1=∠3,∴△ABM∽△MCD;(2)连接OM.∵BC为圆O的切线,∴OM⊥BC.∵AB⊥BC,∴sin∠E==,即=.∵AD=8,AB=5,∴=,即OE=16,根据勾股定理得:ME===4.【点睛】本题考查了相似三角形的判定与性质,圆周角定理,锐角三角函数定义以及切线的性质,熟练掌握相似三角形的判定与性质是解答本题的关键.20、(1)1,3,1;(2)(0,1),(1,3),1【分析】(1)由于已知一次函数y1=-x+a和反比例函数交于A、B两点,且点A的坐标是(1,3),把A的坐标代入反比例函数解析式中即可确定k的值,然后利用解析式即可确定点B的坐标,最后利用A或B坐标即可确定a的值;
(2)利用(1)中求出的直线的解析式可以确定C,D的坐标,然后利用面积的割补法可以求出△AOB的面积.【详解】解:(1)∵反比例函数经过A、B两点,且点A的坐标是(1,3),∴3=,∴k=3,而点B的坐标是(3,m),∴m==1,∵一次函数y1=﹣x+a经过A点,且点A的坐标是(1,3),∴3=﹣1+a,∴a=1.(2)∵y1=﹣x+1,当x=0时,y=1,当y=0时,x=1,∴C的坐标为(0,1),D的坐标为(1,0),∴S△AOB=S△COB﹣S△COA=×1×3﹣×1×1=1.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和函数图象中的面积问题,求面积体现了数形结合的思想,做此类题一定要正确理解图形几何意义.21、(1)a=2;(2)或;(3)见解析.【分析】(1)过点作于点,由角平分线定义可得度数,在中,由,可得,由,得点与点重合,从而,由此得解;(2)范围内两种情形:情形1:过点作于点,过点作延长线于点,情形2:过点作于点交AB的延长线于点H,再由三角形的面积公式计算即可;(3)由(2)的结论即可求得结果.【详解】(1)过点作于点,∵平分,∴,在中,,,∵,∴点与点重合,∴,∴;(2)情形1:过点作于点,过点作延长线于点,∵平分,∴.∵在中,,,在中,,,∴;情形2:过点作于点交AB的延长线于点H,则,在中,,于是;(3)证明:由(2)可得=,即=,则a+c=ac【点睛】此题主要考查学生对解直角三角形的理解及运用,掌握三角函数关系式的恒等变换,正弦定理和余弦定理以及三角形面积的解答方法是解决此题的关键.22、(1);(2)【分析】运用画树状图或列表的方法列举出符合题意的各种情况的个数,再根据概率公式:概率=所求情况数与总情况数之比解答即可.【详解】解:(1)画树状图如图所示.共有6种等可能的情况,其中摸到的球是“一黄一蓝”的情况有2种,因此球颜色是“一黄一蓝”的概率为.(2)画树状图如图所示.共有9种等可能的情况,其中摸到的球是“一黄一蓝”的情况有2种,因此球颜色是“一黄一蓝”的概率为.【点睛】本题主要考查的是用画树状图法或列表法求概率.着重考查了用画树状图法或列表法列举随机事件出现的所有情况,并求出某事件的概率,应注意认真审题,注意不放回再摸和放回再摸的区别.23、(1);(2)此次消毒能有效杀死该病毒.【分析】(1)用待定系数法求函数解析式;(2)求正比例函数解析式,计算正比例函数和反比例函数的函数值为5对应的自变量的值,则它们的差为含药量不低于5mg/m3的持续时间,然后与21比较大小即可判断此次消毒是否有效.【详解】解:(1)设反比例函数关系式为.∵反比例函数的图像过点,∴.∴.(2)设正比例函数关系式为.把,代入上式,得.∴.当时,.把代入,得.∴.答:此次消毒能有效杀死该病毒.【点睛】本题考查了反比例函数的应用:能把实际的问题转化为数学问题,建立反比例函数的数学模型.注意在自变量和函数值的取值上的实际意义.也考查了一次函数.24、(1)点D的坐标是(1,2);(2)双曲线的解析式是:y=;(1)△CDE的面积是1.【分析】(1)根据平行四边形对边相等的性质,将线段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度网络安全防护技术合同范本
- 2025年度医疗设备养护与故障快速响应合同
- 2025年度智能物流配送平台建设合同
- 2025年度大型商业综合体消防设施供水供电合同协议书
- 2025年度荒滩综合养殖区特许经营权出让合同
- 2025年度广告牌多媒体内容制作与承揽合同
- 2025年度建筑行业特种作业人员劳动合同范本-@-1
- 2025年度智能机器人研发与销售合同-@-9
- 2025年度建筑钢结构制造与安装工程合同-@-1
- 2025年度基因检测与遗传咨询技术服务合同范本
- 2025民政局离婚协议书范本(民政局官方)4篇
- 2024年03月四川农村商业联合银行信息科技部2024年校园招考300名工作人员笔试历年参考题库附带答案详解
- 小学一年级数学上册口算练习题总汇
- 《工程勘察设计收费标准》(2002年修订本)
- 艾默生HipulseUPS操作手册
- 爱心树(绘本)
- NPI管理流程(精)
- 色卡 对照表 PANTONE-CMYK
- 海员(船员)体格检查表
- 深圳水管理体制改革的思考和建议
- 消毒供应中心打包区教学要点 ppt课件
评论
0/150
提交评论