2022-2023学年海南东坡学校数学九年级第一学期期末调研试题含解析_第1页
2022-2023学年海南东坡学校数学九年级第一学期期末调研试题含解析_第2页
2022-2023学年海南东坡学校数学九年级第一学期期末调研试题含解析_第3页
2022-2023学年海南东坡学校数学九年级第一学期期末调研试题含解析_第4页
2022-2023学年海南东坡学校数学九年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A. B. C.△ADE∽△ABC D.2.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为()A. B. C. D.3.反比例函数在第一象限的图象如图所示,则k的值可能是()A.3 B.5 C.6 D.84.如图,,相交于点,.若,,则与的面积之比为()A. B. C. D.5.已知一个单位向量,设、是非零向量,那么下列等式中正确的是().A.; B.; C.; D..6.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,那么下列选项正确的是()①BP=BF;②如图1,若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE∙EF=108.A.①②③④ B.①②④⑤ C.①②③⑤ D.①②③④⑤7.如图,⊙O是△ABC的外接圆,连接OA、OB,∠C=40°,则∠OAB的度数为()A.30° B.40° C.50° D.80°8.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A. B. C. D.9.如图,一个直角梯形的堤坝坡长AB为6米,斜坡AB的坡角为60°,为了改善堤坝的稳固性,准备将其坡角改为45°,则调整后的斜坡AE的长度为()A.3米 B.3米 C.(3﹣2)米 D.(3﹣3)米10.如图,在四边形中,对角线,相交于点,且,.若要使四边形为菱形,则可以添加的条件是()A. B. C. D.二、填空题(每小题3分,共24分)11.一元二次方程x(x﹣3)=3﹣x的根是____.12.因式分解:______.13.如图,,分别是边,上的点,,若,,,则______.14.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)

15.方程(x-3)2=4的解是16.已知点是线段的一个黄金分割点,且,,那么__________.17.若,则_______.18.已知:如图,△ABC的面积为16,点D、E分别是边AB、AC的中点,则△ADE的面积为______.三、解答题(共66分)19.(10分)某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).20.(6分)如图,反比例函数的图象与正比例函数的图象交于点,且点的横坐标为2.(1)求反比例函数的表达;(2)若射线上有点,,过点作与轴垂直,垂足为点,交反比例函数图象于点,连接,,请求出的面积.21.(6分)足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为本,销售单价为元.(1)请直接写出与之间的函数关系式和自变量的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润元最大?最大利润是多少元?22.(8分)在矩形中,,,是射线上的点,连接,将沿直线翻折得.(1)如图①,点恰好在上,求证:∽;(2)如图②,点在矩形内,连接,若,求的面积;(3)若以点、、为顶点的三角形是直角三角形,则的长为.23.(8分)如图,在平面直角坐标系中,点P(﹣1,m)是双曲线y=上的一个点,过点P作PQ⊥x轴于点Q,连接PO,△OPQ的面积为1.(1)求m的值和双曲线对应的函数表达式;(2)若经过点P的一次函数y=kx+b(k≠0、b≠0)的图象与x轴交于点A,与y交于点B且PB=2AB,求k的值.24.(8分)已知关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.25.(10分)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为_____.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.26.(10分)如图,已知点A,B的坐标分别为(4,0),(3,2).(1)画出△AOB关于原点O对称的图形△COD;(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D的坐标是,点F的坐标是,此图中线段BF和DF的关系是.

参考答案一、选择题(每小题3分,共30分)1、D【解析】∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,,∴.由此可知:A、B、C三个选项中的结论正确,D选项中结论错误.故选D.2、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】14400000=1.44×1.故选:A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、B【分析】根据点(1,3)在反比例函数图象下方,点(3,2)在反比例函数图象上方可得出k的取值范围,即可得答案.【详解】∵点(1,3)在反比例函数图象下方,∴k>3,∵点(3,2)在反比例函数图象上方,∴<2,即k<6,∴3<k<6,故选:B.【点睛】本题考查了反比例函数的图象的性质,熟记k=xy是解题关键.4、B【分析】先证明两三角形相似,再利用面积比是相似比的平方即可解出.【详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比为:1:2.∴△AOB和△DCO面积比为:1:4.故选B.【点睛】本题考查相似三角形的面积比,关键在于牢记面积比和相似比的关系.5、B【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:、左边得出的是的方向不是单位向量,故错误;、符合向量的长度及方向,正确;、由于单位向量只限制长度,不确定方向,故错误;、左边得出的是的方向,右边得出的是的方向,两者方向不一定相同,故错误.故选:.【点睛】本题考查了向量的性质.6、C【分析】易证BE∥PG可得∠FPG=∠PFB,再由折叠的性质得∠FPB=∠FPG,所以∠FPB=∠PFB,根据等边对等角即可判断①;由矩形的性质得∠A=∠D=90°,AB=CD,用SAS即可判定全等,从而判断②;证明△ABE∽△DEC,得出比例式建立方程求出DE,从而判断③;证明△ECF∽△GCP,进而求出PC,即可得到sin∠PCB的值,从而判断④;证明△GEF∽△EAB,利用对应边成比例可得出结论,从而判断⑤.【详解】①∵四边形ABCD为矩形,顶点B的对应点是G,∴∠G=90°,即PG⊥CG,∵BE⊥CG∴BE∥PG∴∠FPG=∠PFB由折叠的性质可得∠FPB=∠FPG,∴∠FPB=∠PFB∴BP=BF,故①正确;②∵四边形ABCD为矩形,∴∠A=∠D=90°,AB=DC又∵点E是AD的中点,∴AE=DE在△AEB和△DEC中,∴△AEB≌△DEC(SAS),故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,即,解得AE=9或16,∵AE<DE,∴AE=9,DE=16,故③正确;④在Rt△ABE中,在Rt△CDE中,由①可知BE∥PG,∴△ECF∽△GCP∴设BP=BF=PG=a,则EF=BE-BF=15-a,由折叠性质可得CG=BC=25,∴,解得,在Rt△PBC中,∴sin∠PCB=,故④错误.⑤如图,连接FG,

∵∠GEF=∠PGC=90°,

∴∠GEF+∠PGC=180°,

∴BF∥PG

∵BF=PG,

∴四边形BPGF是菱形,

∴BP∥GF,GF=BP=9

∴∠GFE=∠ABE,

∴△GEF∽△EAB,

∴BE•EF=AB•GF=12×9=108,故⑤正确;①②③⑤正确,故选C.【点睛】本题考查四边形综合问题,难度较大,需要熟练掌握全等三角形的判定,相似三角形的判定和性质,以及勾股定理和三角函数,综合运用所学几何知识是关键.7、C【分析】直接利用圆周角定理得出∠AOB的度数,再利用等腰三角形的性质得出答案.【详解】解:∵∠ACB=40°,∴∠AOB=80°,∵AO=BO,∴∠OAB=∠OBA=(180°﹣80°)=50°.故选:C.【点睛】本题主要考查了三角形的外接圆与外心,圆周角定理.正确得出∠AOB的度数是解题关键.8、C【分析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=-x2+x,对照四个选项即可得出.【详解】∵△ABC为等边三角形,

∴∠B=∠C=60°,BC=AB=a,PC=a-x.

∵∠APD=60°,∠B=60°,

∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,

∴∠BAP=∠CPD,

∴△ABP∽△PCD,∴,即,∴y=-x2+x.故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.9、A【分析】如图(见解析),作于H,在中,由可以求出AH的长,再在中,由即可求出AE的长.【详解】如图,作于H在中,则在中,则故选:A.【点睛】本题考查了锐角三角函数,熟记常见角度的三角函数值是解题关键.10、D【分析】根据对角线互相平分的四边形是平行四边形可得四边形是平行四边形,再根据菱形的判定定理和矩形的判定定理逐一分析即可.【详解】解:∵在四边形中,,∴四边形是平行四边形若添加,则四边形是矩形,故A不符合题意;若添加,则四边形是矩形,故B不符合题意;若添加,与菱形的对角线互相垂直相矛盾,故C不符合题意;若添加则四边形是菱形,故D符合题意.故选D.【点睛】此题考查的是平行四边形的判定、矩形的判定和菱形的判定,掌握平行四边形的判定定理、矩形的判定定理和菱形的判定定理是解决此题的关键.二、填空题(每小题3分,共24分)11、x1=3,x2=﹣1.【分析】整体移项后,利用因式分解法进行求解即可.【详解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案为x1=3,x2=﹣1.12、x(x-5)【分析】直接提公因式,即可得到答案.【详解】解:,故答案为:.【点睛】本题考查了提公因式法因式分解,解题的关键是熟练掌握因式分解的方法.13、1【分析】证明△ADE∽△ACB,根据相似三角形的性质列出比例式,计算即可.【详解】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴,即,解得,AE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.14、或【解析】因为,,,所以,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.15、1或1【解析】方程的左边是一个完全平方的形式,右边是4,两边直接开平方有x-3=±2,然后求出方程的两个根.解:(x-3)2=4x-3=±2x=3±2,∴x1=1,x2=1.故答案是:x1=1,x2=1.本题考查的是用直接开平方法解一元二次方程,方程的左边的一个完全平方的形式,右边是一个非负数,两边直接开平方,得到两个一元一次方程,求出方程的根.16、【分析】根据黄金分割的概念得到,把代入计算即可.【详解】∵P是线段AB的黄金分割点,∴故答案为.【点睛】本题考查了黄金分割点的应用,理解黄金分割点的比例并会运算是解题的关键.17、【分析】由题意直接根据分比性质,进行分析变形计算可得答案.【详解】解:,由分比性质,得.故答案为:.【点睛】本题考查比例的性质,熟练掌握并利用分比性质是解题的关键.18、4【分析】根据三角形中位线的性质可得DE//BC,,即可证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】∵点D、E分别是边AB、AC的中点,∴DE为△ABC的中位线,∴DE//BC,,∴△ADE∽△ABC,∴=,∵△ABC的面积为16,∴S△ADE=×16=4.故答案为:4【点睛】本题考查三角形中位线的性质及相似三角形的判定与性质,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握相似三角形的面积比等于相似比的平方是解题关键.三、解答题(共66分)19、AC=6米;CD=5.2米.【分析】根据题意和正弦的定义求出AB的长,根据余弦的定义求出CD的长.【详解】解:由题意得,AB⊥EB,CD⊥AE,∴∠CDA=∠EBA=90°,∵∠E=30°,∴AB=AE=8米,∵BC=2米,∴AC=AB﹣BC=6米,∵∠DCA=90°﹣∠DAC=30°,∴CD=AC×cos∠DCA=6×≈5.2(米).【点睛】本题考查了解直角三角形的应用,解决本题的关键是①掌握特殊角的函数值,②能根据题意做构建直角三角形,③熟练掌握直角三角形的边角关系.20、(1)y=(x>0);(2)△OAB的面积为2.【分析】(1)将A点的横坐标代入正比例函数,可求出A点坐标,再将A点坐标代入反比例函数求出k,即可得解析式;(2)过A点作AN⊥OM,垂足为点N,则AN∥PM,根据平行线分线段成比例得,进而求出M点坐标,将M点的横坐标分别代入反比例函数和正比例函数,求出B、P的坐标,再利用三角形面积公式求出△POM、△BOM的面积,作差得到△BOP的面积,最后根据S△OAB∶S△BAP=OA∶AP=1∶2即可求解.【详解】解:(1)A点在正比例函数y=x的图象上,当x=2时,y=3,∴点A的坐标为(2,3)将(2,3)代入反比例函数解析式y=(x>0),得,解得k=1.∴反比例函数的表达式为y=(x>0)(2)如图,过A点作AN⊥OM,垂足为点N,则AN∥PM,∴.∵PA=2OA,∴MN=2ON=4,∴OM=ON+MN=2+4=1∴M点的坐标为(1,0)将x=1代入y=,得y==1,∴点B的坐标为(1,1)将x=1代入y=x,得y==9,∴点P的坐标为(1,9).∴S△POM=×1×9=27,S△BOM=×1×1=3∴S△BOP=27-3=24又∵S△OAB∶S△BAP=OA∶AP=1∶2∴S△OAB=×24=2答:△OAB的面积为2.【点睛】本题考查了反比例函数与一次函数的综合问题,以及平行线分线段成比例,熟练掌握待定系数法求函数解析式,利用点的坐标求三角形面积是解题的关键.21、(1)(2)当x=52时,w有最大值为2640.【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;

(2)利用利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.【详解】(1)由题意得:y=300-10(x-44)=-10x+740,

每本进价40元,且获利不高于30%,即最高价为52元,即x≤52,故:44≤x≤52,

(2)w=(x-40)(-10x+740)=-10(x-57)2+2890,

当x<57时,w随x的增大而增大,

而44≤x≤52,所以当x=52时,w有最大值,最大值为2640,

答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润2640元.【点睛】此题考查二元一次函数的应用,二次函数的应用.最大销售利润的问题常利函数的增减性来解答,解题关键在于确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=−时取得.22、(1)见解析;(2)的面积为;(3)、5、1、【分析】(1)先说明∠CEF=∠AFB和,即可证明∽;(2)过点作交与点,交于点,则;再结合矩形的性质,证得△FGE∽△AHF,得到AH=5GF;然后运用勾股定理求得GF的长,最后运用三角形的面积公式解答即可;(3)分点E在线段CD上和DC的延长线上两种情况,然后分别再利用勾股定进行解答即可.【详解】(1)解:∵矩形中,∴由折叠可得∵∴∴在和中∵,∴∽(2)解:过点作交与点,交于点,则∵矩形中,∴由折叠可得:,,∵∴∴在和中∵∴∽∴∴∴在中,∵∴∴∴的面积为(3)设DE=x,以点E、F、C为顶点的三角形是直角三角形,则:①当点E在线段CD上时,∠DAE<45°,∴∠AED>45°,由折叠性质得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,当∠EFC=90°时,如图所示:由折叠性质可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴点A,F,C在同一条线上,即:点F在矩形的对角线AC上,在Rt△ACD中,AD=5,CD=AB=3,根据勾股定理得,AC=,由折叠可知知,EF=DE=x,AF=AD=5,∴CF=AC-AF=-5,在Rt△ECF中,EF2+CF2=CE2,∴x2+(-5)2=(3-x)2,解得x=即:DE=b,当∠ECF=90°时,如图所示:点F在BC上,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,BF==4,∴CF=BC-BF=1,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,(3-x)2+12=x2,解得x=,即:DE=;②当点E在DC延长线上时,CF在∠AFE内部,而∠AFE=90°,∴∠CFE<90°,∴只有∠CEF=90°或∠ECF=90°,a、当∠CEF=90°时,如图所示由折叠知,AD=AF=5,∠AFE=90°=∠D=∠CEF,∴四边形AFED是正方形,∴DE=AF=5;b、当∠ECF=90°时,如图所示:∵∠ABC=∠BCD=90°,∴点F在CB的延长线上,∴∠ABF=90°,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,BF==4,∴CF=BC+BF=9,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,∴(x-3)2+92=x2,解得x=1,即DE=1,故答案为、、5、1.【点睛】本题属于相似形综合题,主要考查了相似三角形的判定和性质、折叠的性质、勾股定理等知识点,正确作出辅助线构造相似三角形和直角三角形是解答本题的关键.23、(1)m=6,y=﹣;(2)k=﹣4或﹣2.【分析】(1)根据反比例函数k的几何意义,求出n的值即可解决问题;(2)分1种情形讨论,①当点A在x轴正半轴上时,由OB∥PQ,可得OB:PQ=AB:AP=1:1,继而求出OB=2,即B(0,2),待定系数法求一次函数解析式即可;②当点A在x轴负半轴上时,由于PB=2AB,显然这种情形不存在;③当点B在y轴负半轴上时,由于PB=2AB,可得PA=PB,根据PQ∥OB,可得,即QA=AO=,求出A(﹣,0),待定系数法求一次函数解析式即可.【详解】(1)∵过点P作PQ⊥x轴于点Q,连接PO,△OPQ的面积为1,∴,∵n<0,∴n=﹣6,∴反比例函数的解析式为y=﹣,∴P(﹣1,6),∴m=6,y=﹣.(2)①当点A在x轴正半轴上时,∵OB∥PQ,∴OB:PQ=AB:AP=1:1,∴OB=2,∴B(0,2),把P(﹣1,6),B(0,2)代入y=kx+b中得到,解得.②当点A在x轴负半轴上时,∵PB=2AB,显然这种情形不存在.③当点B在y轴负半轴上时,∵PB=2AB,∴PA=PB,∵PQ∥OB,∴,∴QA=AO=,∴A(﹣,0),把P(﹣1,6),A(﹣,0)代入y=kx+b中得到,解得,综上所述,k=﹣4或﹣2.【点睛】本题主要考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题.24、(1)k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论