2022-2023学年广东省深圳市数学九年级第一学期期末预测试题含解析_第1页
2022-2023学年广东省深圳市数学九年级第一学期期末预测试题含解析_第2页
2022-2023学年广东省深圳市数学九年级第一学期期末预测试题含解析_第3页
2022-2023学年广东省深圳市数学九年级第一学期期末预测试题含解析_第4页
2022-2023学年广东省深圳市数学九年级第一学期期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在矩形中,,对角线相交于点,垂直平分于点,则的长为()A.4 B. C.5 D.2.硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是()A.正面向上 B.正面不向上 C.正面或反面向上 D.正面和反面都不向上3.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为().A.-1或2 B.-1或1C.1或2 D.-1或2或14.等腰三角形底边长为10,周长为36,则底角的余弦值等于()A. B. C. D.5.正方形网格中,∠AOB如图放置,则cos∠AOB的值为(

)A. B. C.

D.6.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣37.二次函数,当时,则()A. B. C. D.8.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为πcm2,则扇形圆心角的度数为()A.120° B.140° C.150° D.160°9.下列命题①若,则②相等的圆心角所对的弧相等③各边都相等的多边形是正多边形④的平方根是.其中真命题的个数是()A.0 B.1 C.2 D.310.x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则2a﹣4b的值为()A.﹣2 B.﹣1 C.1 D.211.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB=BC时,四边形ABCD是菱形;②当AC⊥BD时,四边形ABCD是菱形;③当∠ABC=90°时,四边形ABCD是菱形:④当AC=BD时,四边形ABCD是菱形;A.3个 B.4个 C.1个 D.2个12.二次函数的图象向左平移个单位,得到新的图象的函数表达式是()A. B.C. D.二、填空题(每题4分,共24分)13.若反比例函数的图像在二、四象限,其图像上有两点,,则______(填“”或“”或“”).14.数学学习应经历“观察、实验、猜想、证明”等过程.下表是几位数学家“抛掷硬币”的实验数据:实验者棣莫弗蒲丰德·摩根费勒皮尔逊罗曼诺夫斯基掷币次数204840406140100003600080640出现“正面朝上”的次数10612048310949791803139699频率0.5180.5070.5060.4980.5010.492请根据以上实验数据,估计硬币出现“正面朝上”的概率为__________.(精确到0.1)15.已知a+b=0目a≠0,则=_____.16.如图,量角器的0度刻度线为,将一矩形直角与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的度数为60°,则该直尺的宽度为_________________.17.若,则化简得_______.18.抛物线的对称轴过点,点与抛物线的顶点之间的距离为,抛物线的表达式为______.三、解答题(共78分)19.(8分)如图,是的直径,是的弦,延长到点,使,连结,过点作,垂足为.(1)求证:;(2)求证:为的切线.20.(8分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.21.(8分)某果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低,若该果园每棵果树产果(千克),增种果树(棵),它们之间的函数关系如图所示.(1)求与之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?22.(10分)已知:二次函数,求证:无论为任何实数,该二次函数的图象与轴都在两个交点;23.(10分)如图,二次函数的图象交轴于点,交轴于点是直线下方抛物线上一动点.(1)求这个二次函数的表达式;(2)连接,是否存在点,使面积最大,若存在,求出点的坐标;若不存在,请说明理由.24.(10分)先化简,再求值.,请从一元二次方程x2+2x-3=0的两个根中选择一个你喜欢的求值.25.(12分)市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=45时,y=10;x=55时,y=1.在销售过程中,每天还要支付其他费用500元.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?26.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.

参考答案一、选择题(每题4分,共48分)1、B【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=;故选:B.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.2、C【分析】根据概率公式分别求出各选项事件的概率,即可判断.【详解】解:若不考虑硬币竖起的情况,A.正面向上概率为1÷2=;B.正面不向上的概率为1÷2=;C.正面或反面向上的概率为2÷2=1;D.正面和反面都不向上的概率为0÷2=0∵1>>0∴正面或反面向上的概率最大故选C.【点睛】此题考查的是比较几个事件发生的可能性的大小,掌握概率公式是解决此题的关键.3、D【解析】当该函数是一次函数时,与x轴必有一个交点,此时a-1=0,即a=1.当该函数是二次函数时,由图象与x轴只有一个交点可知Δ=(-4)2-4(a-1)×2a=0,解得a1=-1,a2=2.综上所述,a=1或-1或2.故选D.4、A【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案.【详解】解:如图,BC=10cm,AB=AC,可得AC=(36-10)÷2=26÷2=13(cm).又AD是底边BC上的高,∴CD=BD=5cm,

∴cosC=,即底角的余弦值为,故选:A.【点睛】本题主要考查等腰三角形的性质和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键.5、B【详解】解:连接AD,CD,设正方形网格的边长是1,则根据勾股定理可以得到:OD=AD=,OC=AC=,∠OCD=90°.则cos∠AOB=.故选B.6、D【详解】因为y=x2-4x-4=(x-2)2-8,以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),所以平移后的抛物线的函数表达式为y=(x+1)2-1.故选D.7、D【分析】因为=,对称轴x=1,函数开口向下,分别求出x=-1和x=1时的函数值即可;【详解】∵=,∴当x=1时,y有最大值5;当x=-1时,y==1;当x=2时,y==4;∴当时,;故选D.【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.8、C【解析】根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为πcm2,∴,∴α=150°,故选:C.【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=.9、A【分析】①根据不等式的性质进行判断;②根据圆心角、弧、弦的关系进行分析即可;③根据正多边形的定义进行判断;④根据平方根的性质进行判断即可.【详解】①若m2=0,则,此命题是假命题;②在同圆或等圆中,相等的圆心角所对的弧相等,此命题是假命题;③各边相等,各内角相等的多边形是正多边形,此命题是假命题;④=4,4的平方根是,此命题是假命题.所以原命题是真命题的个数为0,故选:A.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.10、A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整体代入的方法计算2a-4b的值即可.【详解】将x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解就是能够使方程左右两边相等的未知数的值.11、D【分析】根据菱形的判定定理判断即可.【详解】解:∵四边形ABCD是平行四边形,∴①当AB=BC时,四边形ABCD是菱形;故符合题意;②当AC⊥BD时,四边形ABCD是菱形;故符合题意;③当∠ABC=90°时,四边形ABCD是矩形;故不符合题意;④当AC=BD时,四边形ABCD是矩形;故不符合题意;故选:D.【点睛】本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.12、C【分析】根据向左平移横坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵二次函数的图象向左平移个单位,∴平移后的抛物线的顶点坐标为(-2,0),∴新的图象的二次函数表达式是:;故选择:C.【点睛】本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定函数解析式的变化更简便,平移的规律:左加右减,上加下减.二、填空题(每题4分,共24分)13、<【解析】分析:根据反比例函数的增减性即可得出答案.详解:∵图像在二、四象限,∴在每一个象限内,y随着x的增大而增大,∵1<2,∴.点睛:本题主要考查的是反比例函数的增减性,属于基础题型.对于反比例函数,当k>0时,在每一个象限内,y随着x的增大而减小;当k<0时,在每一个象限内,y随着x的增大而增大.14、0.1【分析】由于表中硬币出现“正面朝上”的频率在0.1左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率为0.1.【详解】解:因为表中硬币出现“正面朝上”的频率在0.1左右波动,

所以估计硬币出现“正面朝上”的概率为0.1.

故答案为0.1.【点睛】本题考查了利用频率估计概率,随实验次数的增多,值越来越精确.15、1【分析】先将分式变形,然后将代入即可.【详解】解:,故答案为1【点睛】本题考查了分式,熟练将式子进行变形是解题的关键.16、【分析】连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有:解直角即可.【详解】连接OC,OD,OC与AD交于点E,直尺的宽度:故答案为【点睛】考查垂径定理,熟记垂径定理是解题的关键.17、【分析】根据二次根式的性质得出,再运用绝对值的意义去掉绝对值号,化简后即可得出答案.【详解】解:∵,∴.∴.故答案为:1.【点睛】此题主要考查二次根式的性质,解题的关键是掌握性质并能根据字母的取值范围确定正负,准确去掉绝对值号.18、y=-x2-2x或y=-x2-2x+8【分析】根据题意确定出抛物线顶点坐标,进而确定出m与n的值,即可确定出抛物线解析式.【详解】∵抛物线的对称轴过点,∴设顶点坐标为:根据题意得:,解得:或抛物线的顶点坐标为(-1,1)或(-1,9),可得:,或,解得:,或,

则该抛物线解析式为:或,

故答案为:或.【点睛】本题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析【分析】(1)连接AD,则AD⊥BC,再由已知,可推出是的垂直平分线,再根据垂直平分线的性质即可得出结论.(2)连接OD,证明OD⊥DE即可.根据三角形中位线定理和平行线的性质可以证明.【详解】解:(1)证明:连接∵是的直径∴又∴是的垂直平分线(2)连接∵点、分别是的中点∴又∴∴为的切线;【点睛】本题考查了直径所对的圆周角是直角,垂直平分线的性质,切线的判定等,准确作出辅助线是解题的关键.20、(1)2m﹣1;(2)C2:y=x2﹣4x;(3)0<a或a≥1或a≤﹣.【分析】(1)C1:y=ax2−2ax−3a=a(x−1)2−4a,顶点(1,−4a)围绕点P(m,0)旋转180°的对称点为(2m−1,4a),即可求解;(2)分≤t<1、1≤t≤、t>三种情况,分别求解,(3)分a>0、a<0两种情况,分别求解.【详解】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,t=2m﹣1,故答案为:2m﹣1;(2)a=﹣1时,C1:y=﹣(x﹣1)2+4,①当≤t<1时,x=时,有最小值y2=,x=t时,有最大值y1=﹣(t﹣1)2+4,则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解;②1≤t≤时,x=1时,有最大值y1=4,x=时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=≠1(舍去);③当t>时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=,当C2过点D′时,同理可得:a=1,故:0<a≤或a≥1;当a<0时,当C2过点D′时,﹣3a=1,解得:a=﹣,故:a≤﹣;综上,故:0<a≤或a≥1或a≤﹣.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形的旋转等,其中(2)(3),要注意分类求解,避免遗漏.21、(1);(2)增种果树10棵时,果园可以收获果实6750千克.【分析】(1)设,将点(12,74)、(28,66)代入即可求出k与b的值,得到函数关系式;(2)根据题意列方程,求出x的值并检验即可得到答案.【详解】(1)设,将点(12,74)、(28,66)代入,得,解得,∴y与x的函数关系式为;(2)由题意得:,解得:,,∵投入成本最低,∴x=10,答:增种果树10棵时,果园可以收获果实6750千克.【点睛】此题考查待定系数法求一次函数解析式,一元二次方程的实际应用,正确理解题意中的x、y的实际意义是解题的关键.22、见解析【分析】计算判别式,并且配方得到△=,然后根据判别式的意义得到结论.【详解】二次函数∵,,,∴,而,∴,即为任何实数时,方程都有两个不等的实数根,∴二次函数的图象与轴都有两个交点.【点睛】本题考查了抛物线与轴的交点:把求二次函数是常数,与轴的交点坐标问题转化为解关于的一元二次方程.23、(1);(2)存在点,使面积最大,点的坐标为.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;

(2)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.【详解】(1)∵二次函数的图象交轴于点,∴设二次函数表达式为,把A、B二点坐标代入可得,解这个方程组,得,∴抛物线解析式为:;(2))∵点P在抛物线上,

∴设点的坐标为过作轴于,交直线于设直线的函数表达式,将B(4,0),C(0,-4)代入得,解这个方程组,得,∴直线BC解析式为,点的坐标为,,,∵,当时,最大,此时,所以存在点,使面积最大,点的坐标为.【点睛】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中用P点坐标表示出△PBC的面积是解题的关键.24、,【分析】根据分式的运算法则进行化简,再把使分式有意义的方程的根代入即可求解.【详解】解:====,∵x2+2x-3=0的两根是-3,1,又∵x不能为1所以把x=﹣3代入,原式=.【点睛】本题考查分式的化简求值、解一元二次方程,注意代入数值时,要选择使分式有意义的数.25、(1)y=﹣2x+200(30≤x≤60);(2)W=﹣2x2+260x﹣6500;(3)当销售单价为60元时,该公司日获利最大为110元.【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单个利润×销售量-500列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论