2022-2023学年甘肃临夏和政县九年级数学第一学期期末统考试题含解析_第1页
2022-2023学年甘肃临夏和政县九年级数学第一学期期末统考试题含解析_第2页
2022-2023学年甘肃临夏和政县九年级数学第一学期期末统考试题含解析_第3页
2022-2023学年甘肃临夏和政县九年级数学第一学期期末统考试题含解析_第4页
2022-2023学年甘肃临夏和政县九年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.﹣2019的倒数的相反数是()A.﹣2019 B. C. D.20192.若x=2是关于x的一元二次方程x2﹣ax=0的一个根,则a的值为()A.1 B.﹣1 C.2 D.﹣23.如图的几何体,它的主视图是()A. B. C. D.4.如图,三个边长均为的正方形重叠在一起,、是其中两个正方形对角线的交点,则两个阴影部分面积之和是()A. B. C. D.5.已知点是线段的一个黄金分割点,则的值为()A. B. C. D.6.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)7.如图所示的工件的主视图是()A. B. C. D.8.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A. B. C. D.9.我市组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. B. C. D.10.如图,在中,,,,则等于()A. B. C. D.二、填空题(每小题3分,共24分)11.若二次函数的图象与x轴的两个交点和顶点构成等边三角形,则称这样的二次函数的图象为标准抛物线.如图,自左至右的一组二次函数的图象T1,T2,T3……是标准抛物线,且顶点都在直线y=x上,T1与x轴交于点A1(2,0),A2(A2在A1右侧),T2与x轴交于点A2,A3,T3与x轴交于点A3,A4,……,则抛物线Tn的函数表达式为_____.12.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为_____.13.已知三个边长分别为2,3,5的正方形如图排列,则图中阴影部分的面积为_____.14.二次函数y=3(x+2)的顶点坐标______.15.如图,中,,以点为圆心的圆与相切,则的半径为________.16.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于,则密码的位数至少要设置___位.17.如图,过原点的直线与反比例函数()的图象交于,两点,点在第一象限.点在轴正半轴上,连结交反比例函数图象于点.为的平分线,过点作的垂线,垂足为,连结.若是线段中点,的面积为4,则的值为______.18.已知点A(a,1)与点A′(5,b)是关于原点对称,则a+b=________.三、解答题(共66分)19.(10分)已知抛物线与轴交于点和且过点.求抛物线的解析式;抛物线的顶点坐标;取什么值时,随的增大而增大;取什么值时,随增大而减小.20.(6分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?21.(6分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.22.(8分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于12AB的长为半径作弧,两弧分别相交于点P、Q②作直线PQ分别交边AB、BC于点E、D.(1)小明所求作的直线DE是线段AB的;(2)联结AD,AD=7,sin∠DAC=17,BC=9,求AC23.(8分)如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作交AP于E点.(1)求证:DE为⊙O的切线;(2)若DE=3,AC=8,求直径AB的长.24.(8分)《海岛算经》第一个问题的大意是:如图,要测量海岛上一座山峰的高度,立两根高丈的标杆和,两竿之间的距步,成一线,从处退行步到,人的眼睛贴着地面观察点,三点成一线;从处退行步到,从观察点,三点也成一-线.试计算山峰的高度及的长.(这里步尺,丈尺,结果用丈表示).怎样利用相似三角形求得线段及的长呢?请你试一试!25.(10分)如图,在平面直角坐标系中,直线与直线,交点的横坐标为,将直线,沿轴向下平移个单位长度,得到直线,直线,与轴交于点,与直线,交于点,点的纵坐标为,直线;与轴交于点.(1)求直线的解析式;(2)求的面积26.(10分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先求-2019的倒数,再求倒数的相反数即可;【详解】解:﹣2019的倒数是,的相反数为,故答案为:C.【点睛】本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.2、C【分析】将x=2代入原方程即可求出a的值.【详解】将x=2代入x2﹣ax=0,∴4﹣2a=0,∴a=2,故选:C.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.3、A【解析】从正面看所得到的图形,进行判断即可.【详解】解:主视图就是从正面看到的图形,因此A图形符合题意,故选:A.【点睛】此题主要考查三视图,解题的关键是熟知三视图的定义.4、A【分析】连接AN,CN,通过将每部分阴影的面积都转化为正方形ACFE的面积的,则答案可求.【详解】如图,连接AN,CN∵四边形ACFE是正方形∴∵,∴∴∴所以四边形BCDN的面积为正方形ACFE的面积的同理可得另一部分阴影的面积也是正方形ACFE的面积的∴两部分阴影部分的面积之和为正方形ACFE的面积的即故选A【点睛】本题主要考查不规则图形的面积,能够利用全等三角形对面积进行转化是解题的关键.5、A【解析】试题分析:根据题意得AP=AB,所以PB=AB-AP=AB,所以PB:AB=.故选B.考点:黄金分割点评:本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点;其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.6、A【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.7、B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B.8、B【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.9、A【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)

共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,

所以两人恰好选择同一场馆的概率,故选:A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.10、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.二、填空题(每小题3分,共24分)11、【分析】设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,由△A1B1A2是等边三角形,结合顶点都在直线y=x上,可以求出,A2(4,0),进而得到T1的表达式:,同理,依次类推即可得到结果.【详解】解:设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,如图所示:∵△A1B1A2是等边三角形,∴∠B1A1A2=60°,∵顶点都在直线y=x上,设,∴OC1=m,,∴,∴∠B1OC1=30°,∴∠OB1A1=30°,∴OA1=A1B1=2=A2B1,∴A1C1=A1B1•cos60°=1,,∴OC1=OA1+A1C1=3,∴,A2(4,0),设T1的解析式为:,则,∴,∴T1:,同理,T2的解析式为:,T3的解析式为:,…则Tn的解析式为:,故答案为:.【点睛】本题考查了等边三角形的性质,直角三角形中锐角三角函数值的应用,直线表达式的应用,图形规律中类比归纳思想的应用,顶点式设二次函数解析式并求解,掌握二次函数解析式的求解是解题的关键.12、【解析】试题解析:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:故答案为13、.【解析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【详解】解:如图,对角线所分得的三个三角形相似,根据相似的性质可知,解得,即阴影梯形的上底就是().再根据相似的性质可知,解得:,所以梯形的下底就是,所以阴影梯形的面积是.故答案为:.【点睛】本题考查的是相似三角形的性质,相似三角形的对应边成比例.14、(-2,0);【分析】由二次函数的顶点式,即可得到答案.【详解】解:二次函数y=3(x+2)的顶点坐标是(,0);故答案为:(,0);【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的顶点坐标.15、【解析】试题解析:在△ABC中,∵AB=5,BC=3,AC=4,如图:设切点为D,连接CD,∵AB是C的切线,∴CD⊥AB,∴AC⋅BC=AB⋅CD,即∴的半径为故答案为:点睛:如果三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.16、1.【分析】分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据所在的范围解答即可.【详解】因为取一位数时一次就拨对密码的概率为;取两位数时一次就拨对密码的概率为;取三位数时一次就拨对密码的概率为;取四位数时一次就拨对密码的概率为.故一次就拨对的概率小于,密码的位数至少需要1位.故答案为1.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17、【分析】连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF;由AB经过原点,则A与B关于原点对称,再由BE⊥AE,AE为∠BAC的平分线,

可得AD∥OE,进而可得S△ACE=S△AOC;设点A(m,),由已知条件D是线段AC中点,DH∥AF,可得2DH=AF,则点D(2m,),证明△DHC≌△AGD,得到S△HDC=S△ADG,所以S△AOC=S△AOF+S梯形AFHD+S△HDC=k+k+=8;即可求解;【详解】解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,

∵过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,

∴A与B关于原点对称,

∴O是AB的中点,

∵BE⊥AE,

∴OE=OA,

∴∠OAE=∠AEO,

∵AE为∠BAC的平分线,

∴∠DAE=∠AEO,

∴AD∥OE,

∴S△ACE=S△AOC,

∵D是线段AC中点,的面积为4,

∴AD=DC,S△ACE=S△AOC=8,

设点A(m,),∵D是线段AC中点,DH∥AF,

∴2DH=AF,

∴点D(2m,),∵CH∥GD,AG∥DH,

∴∠ADG=∠DCH,∠DAG=∠CDH,在△AGD和△DHC中,

∴S△HDC=S△ADG,

∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+×(DH+AF)×FH+S△HDC=k+k+=8;

∴k=8,

∴k=.

故答案为.【点睛】本题考查反比例函数k的意义;借助直角三角形和角平分线,将△ACE的面积转化为△AOC的面积是解题的关键.18、-1【解析】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-1,故答案为-1.三、解答题(共66分)19、(1);(1);(3)当时,随增大而增大;当时,随增大而减小.【分析】(1)设二次函数解析式为y=a(x﹣1)(x﹣1),然后把点(3,4)代入函数解析式求得a的值即可;(1)将(1)中抛物线的解析式利用配方法转化为顶点式,可以直接写出顶点坐标;(3)根据抛物线的开口方向和对称轴写出答案.【详解】(1)∵二次函数y=ax1+bx+c的图象与x轴交于点(1,0)和(1,0),∴设该二次函数解析式为y=a(x﹣1)(x﹣1)(a≠0),把点(3,4)代入,得:a×(3﹣1)×(3﹣1)=4,解得:a=1.则该抛物线的解析式为:y=1(x﹣1)(x﹣1);(1)由(1)知,抛物线的解析式为y=1(x﹣1)(x﹣1).∵y=1(x﹣1)(x﹣1)=1(x)1,∴该抛物线的顶点坐标是:(,).(3)由抛物线的解析式y=1(x)1知,抛物线开口方向向上,对称轴是x.结合二次函数y=ax1+bx+c的图象与x轴交于点(1,0)和(1,0),作出该抛物线的大致图象.如图所示,当x时,y随x的增大而增大;当x时,y随x的增大而减小.【点睛】本题考查了抛物线与x轴的交点.解题时,需要熟悉抛物线解析式的三种形式,并且掌握抛物线的性质.20、(1)50,72;(2)作图见解析;(3)1.【分析】(1)用A类学生的人数除以A类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C类的的学生所占得百分比即可得答案.【详解】(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如所示,(3)300×30%=1(名)即该校九年级男生“引体向上”项目成绩为C类的有1名.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21、(1)60;(2)四边形ACFD是菱形.理由见解析.【分析】(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.【详解】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∠DCE=∠ACB=90°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.22、(1)线段AB的垂直平分线(或中垂线);(2)AC=53.【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=17,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.23、(1)证明见解析;(3)1.【分析】(1)连接OD若要证明DE为⊙O的切线,只要证明∠DOE=90°即可;(3)过点O作OF⊥AP于F,利用垂径定理以及勾股定理计算即可.【详解】解:连接OD.∵OC=OD,∴∠1=∠3.∵CD平分∠PCO,∴∠1=∠3.∴∠3=∠3.∵DE⊥AP,∴∠3+∠EDC=90°.∴∠3+∠EDC=90°.即∠ODE=90°.∴OD⊥DE.∴DE为⊙O的切线.(3)过点O作OF⊥AP于F.由垂径定理得,AF=CF.∵AC=8,∴AF=4.∵OD⊥DE,DE⊥AP,∴四边形ODEF为矩形.∴OF=DE.∵DE=3,∴OF=3.在Rt△AOF中,OA3=OF3+AF3=43+33=36.∴OA=6.∴AB=3OA=1.【点睛】本题考查1.切线的判定;3.勾股定理;3.垂径定理,属于综合性题目,掌握相关性质定理正确推理论证是解题关键.24、BH=18450丈,AH=753丈.【分析】根据“平行线法”证得△BCF∽△HAF、△DEG∽△HAG,然后由相似三角形的对应边成比例即可求解.【详解】∵AH∥BC,∴△BCF∽△HAF,∴,又∵DE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论