版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼2.若式子有意义,则x的取值范围为()A.x≥2 B.x≠3C.x≥2或x≠3 D.x≥2且x≠33.⊙O的半径为15cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=18cm,则AB和CD之间的距离是()A.21cm B.3cmC.17cm或7cm D.21cm或3cm4.如图,截的三条边所得的弦长相等,若,则的度数为()A. B. C. D.5.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A.cm2 B.cm2 C.cm2 D.()ncm26.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为A. B. C. D.7.在半径为的圆中,挖出一个半径为的圆面,剩下的圆环的面积为,则与的函数关系式为()A. B. C. D.8.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A. B.2 C. D.9.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.410.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上 B.点M在⊙C内 C.点M在⊙C外 D.点M不在⊙C内11.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,那么下列选项正确的是()①BP=BF;②如图1,若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE∙EF=108.A.①②③④ B.①②④⑤ C.①②③⑤ D.①②③④⑤12.已知点P(a,b)是平面直角坐标系中第四象限的点,则化简+|b-a|的结果是()A. B.a C. D.二、填空题(每题4分,共24分)13.连接三角形各边中点所得的三角形面积与原三角形面积之比为:.14.如图,已知中,,,,将绕点顺时针旋转得到,点、分别为、的中点,若点刚好落在边上,则______.15.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是_____16.如图,⊙O是等边△ABC的外接圆,弦CP交AB于点D,已知∠ADP=75°,则∠POB等于_______°.17.周末小明到商场购物,付款时想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,则选择“微信”支付方式的概率为____________.18.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,若AB=2,则此三角形移动的距离AA′=_______.三、解答题(共78分)19.(8分)(1)2y2+4y=y+2(用因式分解法)(2)x2﹣7x﹣18=0(用公式法)(3)4x2﹣8x﹣3=0(用配方法)20.(8分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?21.(8分)某农场今年第一季度的产值为50万元,第二季度由于改进了生产方法,产值提高了;但在今年第三、第四季度时该农场因管理不善.导致其第四季度的产值与第二季度的产值相比下降了11.4万元.(1)求该农场在第二季度的产值;(2)求该农场在第三、第四季度产值的平均下降的百分率.22.(10分)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)23.(10分)倡导全民阅读,建设书香社会.(调查)目前,某地纸媒体阅读率为40%,电子媒体阅读率为80%,综合媒体阅读率为90%.(百度百科)某种媒体阅读率,指有某种媒体阅读行为人数占人口总数的百分比;综合阅读率,在纸媒体和电子体中,至少有一种阅读行为的人数占人口总数的百分比,它反映了一个国家或地区的阅读水平.(问题解决)(1)求该地目前只有电子媒体阅读行为人数占人口总数的百分比;(2)国家倡导全民阅读,建设书香社会.预计未来两个五年中,若该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加,这样十年后,只读电子媒体的人数比目前增加53%,求百分数x.24.(10分)已知:AB为⊙O的直径.(1)作OB的垂直平分线CD,交⊙O于C、D两点;(2)在(1)的条件下,连接AC、AD,则△ACD为三角形.25.(12分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为.求:(1)观众区的水平宽度;(2)顶棚的处离地面的高度.(,,结果精确到)26.如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数的图象上,边CD在x轴上,点B在y轴上.已知.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标.(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.2、D【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件可得关于x的不等式组,解不等式组即可.【详解】由题意,要使在实数范围内有意义,必须且x≠3,故选D.3、D【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=AB=12cm,CF=CD=9cm,接着根据勾股定理,在Rt△OAE中计算出OE=9cm,在Rt△OCF中计算出OF=12cm,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF-OE.【详解】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,
∵AB∥CD,
∴OF⊥CD,
∴AE=BE=AB=12cm,CF=DF=CD=9cm,
在Rt△OAE中,∵OA=15cm,AE=12cm,
∴OE=,
在Rt△OCF中,∵OC=15cm,CF=9cm,
∴OF=,
当圆心O在AB与CD之间时,EF=OF+OE=12+9=21cm(如图1);
当圆心O不在AB与CD之间时,EF=OF-OE=12-9=3cm(如图2);
即AB和CD之间的距离为21cm或3cm.
故选:D.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数学问题.4、C【分析】先利用截的三条边所得的弦长相等,得出即是的内心,从而∠1=∠2,∠3=∠4,进一步求出的度数.【详解】解:过点分别作、、,垂足分别为、、,连接、、、、、、、,如图:∵,∴∴∴点是三条角平分线的交点,即三角形的内心∴,∵∴∴.故选:C【点睛】本题考查的是三角形的内心、角平分线的性质、全等三角形的判定和性质以及三角形内角和定理,比较简单.5、B【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和.【详解】由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n-1)=cm1.故选B.【点睛】考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.6、B【解析】试题解析:在菱形中,,,所以,,在中,,因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.7、D【分析】根据圆环的面积=大圆的面积-小圆的面积,即可得出结论.【详解】解:根据题意:y=故选D.【点睛】此题考查的是圆环的面积公式,掌握圆环的面积=大圆的面积-小圆的面积是解决此题的关键.8、C【解析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.考点:圆周角定理;锐角三角函数的定义.9、C【分析】过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【详解】作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值为22,故答案为C.【点睛】本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的10、A【解析】根据题意可求得CM的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选A.【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.11、C【分析】易证BE∥PG可得∠FPG=∠PFB,再由折叠的性质得∠FPB=∠FPG,所以∠FPB=∠PFB,根据等边对等角即可判断①;由矩形的性质得∠A=∠D=90°,AB=CD,用SAS即可判定全等,从而判断②;证明△ABE∽△DEC,得出比例式建立方程求出DE,从而判断③;证明△ECF∽△GCP,进而求出PC,即可得到sin∠PCB的值,从而判断④;证明△GEF∽△EAB,利用对应边成比例可得出结论,从而判断⑤.【详解】①∵四边形ABCD为矩形,顶点B的对应点是G,∴∠G=90°,即PG⊥CG,∵BE⊥CG∴BE∥PG∴∠FPG=∠PFB由折叠的性质可得∠FPB=∠FPG,∴∠FPB=∠PFB∴BP=BF,故①正确;②∵四边形ABCD为矩形,∴∠A=∠D=90°,AB=DC又∵点E是AD的中点,∴AE=DE在△AEB和△DEC中,∴△AEB≌△DEC(SAS),故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,即,解得AE=9或16,∵AE<DE,∴AE=9,DE=16,故③正确;④在Rt△ABE中,在Rt△CDE中,由①可知BE∥PG,∴△ECF∽△GCP∴设BP=BF=PG=a,则EF=BE-BF=15-a,由折叠性质可得CG=BC=25,∴,解得,在Rt△PBC中,∴sin∠PCB=,故④错误.⑤如图,连接FG,
∵∠GEF=∠PGC=90°,
∴∠GEF+∠PGC=180°,
∴BF∥PG
∵BF=PG,
∴四边形BPGF是菱形,
∴BP∥GF,GF=BP=9
∴∠GFE=∠ABE,
∴△GEF∽△EAB,
∴
∴BE•EF=AB•GF=12×9=108,故⑤正确;①②③⑤正确,故选C.【点睛】本题考查四边形综合问题,难度较大,需要熟练掌握全等三角形的判定,相似三角形的判定和性质,以及勾股定理和三角函数,综合运用所学几何知识是关键.12、A【解析】根据第四象限的点的横坐标是正数,纵坐标是负数,求解即可.【详解】∵点P(a,b)是平面直角坐标系中第四象限的点,∴a>0,b<0,∴b−a<0,∴+|b-a|=−b−(b−a)=−b−b+a=−2b+a=a−2b,故选A.【点睛】本题考查点的坐标,二次根式的性质与化简,解题的关键是根据象限特征判断正负.二、填空题(每题4分,共24分)13、1:1【分析】证出DE、EF、DF是△ABC的中位线,由三角形中位线定理得出,证出△DEF∽△CBA,由相似三角形的面积比等于相似比的平方即可得出结果.【详解】解:如图所示:∵D、E、F分别AB、AC、BC的中点,∴DE、EF、DF是△ABC的中位线,∴DE=BC,EF=AB,DF=AC,∴∴△DEF∽△CBA,∴△DEF的面积:△CBA的面积=()2=.故答案为1:1.考点:三角形中位线定理.14、【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=,∵DM⊥BC,DC=DB,∴CM=BM=,∴EM=CE-CM=5-3=2,∵DM=,∴由勾股定理得,DE=,∵CD=CE=5,CN⊥DE,∴DN=EN=,∴由勾股定理得,CN=,∴sin∠DEC=.故答案为:.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.15、【解析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【详解】解:∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,
∵点E是边BC的中点,
∴BE=BC=AD,
∴△BEF∽△DAF,∴∴EF=AF,
∴EF=AE,
∵点E是边BC的中点,
∴由矩形的对称性得:AE=DE,
∴EF=DE,设EF=x,则DE=3x,
∴DF==2x,∴tan∠BDE===;故答案为:.【点睛】本题考查相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.16、90【分析】先根据等边三角形的的性质和三角形的外角性质求出∠ACP,进而求得可得∠BCP,最后根据圆周角定理∠BOP=2∠BCP=90°.【详解】解:∵∠A=∠ACB=60°,∠ADP=75°,∴∠ACP=∠ADP-∠A=15°,∴∠BCP=∠ACB-∠ACP=45°,∴∠BOP=2∠BCP=90°.故答案为90.【点睛】此题主要考查了等边三角形的的性质,三角形外角的性质,以及圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17、【分析】利用概率公式直接写出答案即可.【详解】∵共“微信”、“支付宝”、“银行卡”三种支付方式,∴选择“微信”支付方式的概率为,故答案为:.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、【分析】由题意易得阴影部分与△ABC相似,然后根据相似三角形的面积比是相似比的平方可求解.【详解】解:把△ABC沿AB边平移到△A′B′C′的位置,,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,AB=2,即,;故答案为.【点睛】本题主要考查相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.三、解答题(共78分)19、(1)y1=﹣2,y2=;(2)x1=9,x2=﹣2;(3)x1=1+,x2=1﹣.【分析】(1)先变形为2y(y+2)﹣(y+2)=0,然后利用因式分解法解方程;(2)先计算出判别式的值,然后利用求根公式法解方程;(3)先把二次项系数化为1,再两边加上一次项系数一半的平方,配方法得到(x﹣1)2=,然后利用直接开平方法解方程.【详解】解:(1)2y(y+2)﹣(y+2)=0,∴(y+2)(2y﹣1)=0,∴y+2=0或2y﹣1=0,所以y1=﹣2,y2=;(2)a=1,b=﹣7,c=﹣18,∴△=(﹣7)2﹣4×(﹣18)=121,∴x=,∴x1=9,x2=﹣2;(3)x2﹣2x=,∴x2﹣2x+1=+1,∴(x﹣1)2=,∴x﹣1=±,∴x1=1+,x2=1﹣.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法和公式法.20、(1)S=﹣x2+8x,其中0<x<8;(2)能,理由见解析;(3)当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.【解析】试题分析:(1)由矩形的一边长为x、周长为16得出另一边长为8﹣x,根据矩形的面积公式可得答案;(2)由设计费为24000元得出矩形面积为12平方米,据此列出方程,解之求得x的值,从而得出答案;(3)将函数解析式配方成顶点式,可得函数的最值情况.试题解析:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=,其中0<x<8,即(0<x<8);(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷200=12(平方米),即=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵=,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.考点:二次函数的应用;一元二次方程的应用;二次函数的最值;最值问题.21、(1)60;(2)该农场在第三、第四季度产值的平均下降百分率为【分析】(1)根据题意,第二季度的产值=第一季度的产值×(1+20%),把数代入求解即可;
(2)本题可设该农场第三、四季度的产值的平均下降的百分率为x,则第三季度的产值为60(1-x)万元,第四季度的产值为60(1-x)2万元,由此可列出方程,进而求解.【详解】解:(1)第二季度的产值为:(万元);(2)设该农场在第三、第四季度产值的平均下降的百分率为,根据题意得:该农场第四季度的产值为(万元),列方程,得:,即,解得:(不符题意,舍去).答:该农场在第三、第四季度产值的平均下降百分率为.【点睛】此类题目旨在考查下降率,要注意下降的基础,另外还要注意解的合理性,从而确定取舍.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.22、(1)证明见解析(2)2【解析】试题分析:(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.试题解析:(1)∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.考点:1.矩形的性质;2.菱形的判定与性质3.三角函数.23、(1)该社区有电子媒体阅读行为人数占人口总数的百分比为50%.(2)x为10%.【分析】(1)根据题意,利用某地传统媒体阅读率为80%,数字媒体阅读率为40%,而综合阅读率为90%,得出等式求出答案;(2)根据综合阅读人数﹣纸媒体阅读人数=只读电子媒体的人数,结合该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加列出方程即可求出答案.【详解】解:(1)设某地人数为a,既有传统媒体阅读又有数字媒体阅读的人数为y,则传统媒体阅读人数为0.8a,数字媒体阅读人数为0.4a.依题意得:0.8a+0.4a﹣y=0.9a,解得y=0.3a,∴传统媒体阅读又有数字媒体阅读的人数占总人口总数的百分比为30%.则该社区有电子媒体阅读行为人数占人口总数的百分比为=80%﹣30%=50%.(2)依题意得:0.9a(1+x)2+0.4a(1﹣x)2=0.5a(1+0.53),整理得:5x2+26x﹣2.65=0,解得:x1=0.1=10%,x2=﹣5.3(舍去),答:x为10%.【点睛】此题主要考查了一元二次方程的应用,根据题意得出正确等量关系是解题关键.24、(1)见解析;(2)等边.【分析】(1)利用基本作图,作CD垂直平分OB;
(2)根据垂直平分线的性质得到OC=CB,DO=DB,则可证明△OCB、△OBD都是等边三角形,所以∠ABC=∠ABD=60°,利用圆周角定理得到∠A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售经理转正工作总结
- 民间借贷代理词(34篇)
- 工作中的心得体会
- 有儿子离婚协议书(34篇)
- 甜品店的创业计划书15篇
- 酒店电气火灾应急预案(3篇)
- 2023年地震数据采集系统资金申请报告
- 茶文化与茶艺鉴赏 教案 项目六 品茶韵-常见茶叶的冲泡与鉴赏
- 2023年防水油漆投资申请报告
- 2024年安防电子项目资金需求报告代可行性研究报告
- 中小学教师资格考试成绩复核申请表
- 五年级上册英语课件M6U1 You can play football well
- 学习《中国式现代化》PPT
- 心肌疾病-第九版内科学课件
- 《Python分支结构》教学设计
- 平板闸阀说明书
- 《行政能力测试》课件
- 工作人员应对火灾现场应急处置卡
- 广西南宁市八年级上学期数学期末考试试卷
- 上海中考物理专题-计算题失分题专题(学生版)
- 标准化与产品标准课件
评论
0/150
提交评论