版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StaticsStaticsofdeformablebodyChapter13
EnergyMethod
13.1Strainenergyofbars13.2Mohrtheorem13.3DiagrammultiplicationmethodforMohrintegration13.4Castigliano'stheoremContentsU=W(13-1)Principleofstrainenergymethod:theworkdonebytheexternalforceatthecorrespondingdisplacementisnumericallyequaltothestrainenergystoredinthedeformedbody.Thestrainenergymethod:Themethodsofsolvingproblemsusingtheoremsandprinciplesrelatedtotheconceptofstrainenergy.External:workWdonebyexternalforceInternal:potentialenergydeformationenergyU13.1Strainenergyofbars1.
StrainenergyforbasicdeformationThecalculationofthestrainenergyunderseveralbasicdeformationsisnowexamined.(1)AxialtensionorcompressionForaxialtensionorcompressionofstraightrodsofequalcross-section,theexternalforceislinearlyrelatedtotheaxialdeformationofthebarwithintheelasticrange.ABoFl
D
(a)FlD
l(b)FThestrainenergyofthebarcanthusbewrittenas
a.Iftheinternalforcevariescontinuouslyalongtheaxisofthebar,i.e.FN=FN(x),Thestrainenergyofthebarcanbe
b.Iftheinternalforcesvaryinsteps,
wheremisthenumberoftensionandcompressionbars.Thestrainenergy(strainenergydensityorspecificenergy)perunitvolumeofatension(compression)baris
ABoM
j(2)Torsionofcircularshafts(a)lMjjMWorkdonebytorque:(b)
AccordingtoequationU=W,thisworkisequaltothetorsionalstrainenergystoredinthecircularshaft.Whenthecircularshaftissubjectedtoexternalforcecouplesatbothendsonly,wehaveThus,thetorsionalstrainenergyofthecircularshaftcanbewrittenasDiscussion:Iftheinternalforcecouplemomentvariescontinuouslyalongtheaxisofthecircularshaft,i.e.Mn=Mn(x),thestrainenergyforthewholecircularshaftisIftheinternalcouplemomentvariesinstepsalongtheaxis,wehave
Thestrainenergyperunitvolumeofthecircularshaft,i.e.thestrainenergydensityinthepureshearstate,is
(3)PlanebendingPurebendingofstraightcantileverbeamsofequalsection.Astheconcentratedcouplemomentgraduallyincreasesfromzerotoitsfinalvaluem,theangleofrotationatthefreeendofthecantileverbeamalsograduallyincreasesfromzerotoitsfinalvalueθ(Fig.a).(b)ABoql(a)
workdonebyMcanbeexpressedintermsoftheareaofthetriangleOAB,i.e
Discussion:strainenergyofthepurelybendingbeamstrainenergyofthestraightbeamintransverseforcebending
Intherangeoflinearelasticityandunderstaticload,thestrainenergyofabarcanbeexpresseduniformlyas
F:generalizedforceδ:generalizeddisplacementF:force
δ:displacement;F:forcecouplemoment
δ:angular-displacement2.CharacteristicsofelasticstrainenergyThedeformationenergiescannotsimplybesuperimposedingeneral.Note:If
M1andM2denotethebendingmomentscausedbythetwoexternalforce(F1F2)actingalonerespectively,whentheyacttogether,thebendingmomentsofthebeamshouldbeM1+M2.Thestrainenergyofthebeamis(2)theelasticstrainenergyisindependentoftheorderofloadinganddependsentirelyonthefinalvalueoftheloadanddisplacement.(3)whenthecross-sectionalchangesorinternalforcesarerepresentedbydifferentfunctions,thedeformationenergyshouldbecalculatedinseparatesections.(4)therodisalinearelastomersatisfyingHooke'slaw,forthenon-linearelastomer,thedeformationenergywillbecome3、TheClapeyron’stheorem-------UniversalexpressionsfordeformationenergyδidenotesthegeneralizeddisplacementofthegeneralizedforceFiatthepointofactionalongitsdirectionofaction.δi
canbewrittenas
whereδi1representsthegeneralizeddisplacementatthepointofFialongitsactiondirection.ItiscausedbythegeneralizedforceF1.Therestaresimilar.β1⋯βm
areconstantsrelatedtothestructure.1F2F1d2dmFmd…..ThesumoftheworkdonebyeachloadisnumericallyequaltothestrainenergyofthestructureThisconclusioniscalledClapeyron’stheorem.Itcanbedescribedasthesumofthedeformationenergyofalinearelastomerequaltoone-halfoftheproductofeachexternalforceanditscorrespondingdisplacement.4.Strainenergyforcombineddeformation
Usingthegeneralexpressionforstrainenergy,thestrainenergyofabarsubjectedtothecombinedactionofbending,torsionandaxialtensioncanbeobtained.
Nowinterceptamicro-segmentoflengthdxinthebar,iftheaxialforce,bendingmomentandtorqueinthecrosssectionareFN(x),M(x)andMn(x)(forthemicro-sectiondx,FN(x),M(x)andMn(x)shouldberegardedasexternalforces).Therelativeaxialdisplacement,rotationangleandtorsionanglebetweenthetwoendcrosssectionsared(Δl),dθanddφ,respectivelySincethedeformationscausedbyeachofFN(x),M(x)andMn(x)areindependentofeachother,thestrainenergywithinthemicro-segmentdxshouldbeThen,thedeformationenergyoftheentirecombineddeformedbarcanbeobtainedbyintegratingtheaboveequation.Example1:TrytofindthestrainenergyofthesquaretrussstructureandfindtherelativedisplacementsatpointsAandC.ItisknownthateachbarhasthesametensileandcompressiverigidityEA.solution:Axialforces:Deformationenergy:BACDFFlWorkdonebyexternalforceFromU=W,
weobtainThen,wecangetBACDFFlExample1:TrytofindthestrainenergyofthesquaretrussstructureandfindtherelativedisplacementsatpointsAandC.ItisknownthateachbarhasthesametensileandcompressiverigidityEA.Example2:Rightfigureshowsaplanerigidframe.ThebendingrigidityandtensilerigidityoftheframeareknowntobeEIandEA,respectively.trytofindtheverticaldisplacementδAofendA.SolutionSectionAB:SectionBC:Deformationenergy:FBACaDeformationenergy:VerticaldisplacementofsectionA:Ifa=landcrosssectiondiameterisd(l=10d),thenExample2:Rightfigureshowsaplanerigidframe.ThebendingrigidityandtensilerigidityoftheframeareknowntobeEIandEA,respectively.trytofindtheverticaldisplacementδAofendA.FBACathen:Thesecondterminbracketsislessthan0.05%.So,theeffectofaxialforcescangenerallybeneglectedwhensolvingfordeformationsordisplacementsinbendingresistantbarstructures.Example2:Rightfigureshowsaplanerigidframe.ThebendingrigidityandtensilerigidityoftheframeareknowntobeEIandEA,respectively.trytofindtheverticaldisplacementδAofendA.FBACaExample3:Aplanecurvedbarwithasemi-circularaxisisshown.AconcentratedforceperpendiculartotheplaneinwhichtheaxisislocatedisactingatthefreeendA.TrytofindtheverticaldisplacementofsectionA.solution:Itcanbeseenfromfigure(b)thatthetorsionandbendingonthecrosssectionm-nare
AFROjdjFAmmndj(b)Deformationenergy:Deformationenergyofthewholerod:mndj(b)Example3:Aplanecurvedbarwithasemi-circularaxisisshown.AconcentratedforceperpendiculartotheplaneinwhichtheaxisislocatedisactingatthefreeendA.TrytofindtheverticaldisplacementofsectionA.LettheverticaldisplacementofAbe.Duringthedeformation,theworkdonebytheexternalforceisnumericallyequaltothestrainenergyofthecurvedbar,i.e.Therefore:mndj(b)Example3:Aplanecurvedbarwithasemi-circularaxisisshown.AconcentratedforceperpendiculartotheplaneinwhichtheaxisislocatedisactingatthefreeendA.TrytofindtheverticaldisplacementofsectionA.13.2Mohr’stheoremMohr’stheoremisaneffectivetoolfordeterminingdisplacementatanypointinanydirection.TheconceptandpropertiesofstrainenergyarenowusedtoderiveMohrtheorem,usingabeamasanexample.SupposethebeamisbentanddeformedundertheactionofanexternalforceF1,F2......,asshowninFigure(a).WecalculatethedeflectionδatanypointConthebeamundertheactionoftheaboveexternalforce.C1F2FABd(a)thestrainenergycausedbyM(x)canbefound….oneunitforceF0=1isappliedatpointCinthedirectionofdeflectionbendingmoment:thedeformationstoredinthebeam:
AddF1,F2
......backtothebeam.TheunitforceF0completestheworkwiththevalueF0δagain.InthecaseofFigure(c),thestrainenergyofthebeamcanbe(b)BAC0F0F2F1FCBAd(c)….SincethebendingmomentunderthejointactionofF0andF1,F2......isM(x)+M0(x),thestrainenergyofthebeamcanalsobeexpressedastwoequationsareequal,so:
ConsideringF0=1,weget:
ThisisMohrtheoremalsoknownastheMohrintegration.Forsmallcurvaturecurvedbar,theMohr'sintegralformulaforstraightbeamcanbeextendedtoobtaintheMohrintegralforthebendingdeformationofthecurvedbar
Theformulaforcalculatingthedisplacementofthenodeofthetrussstructure:
TheMohrformulaforcalculatingthedisplacementofacombineddeformedstructureis:PointstonotewhenusingMoore'stheorem:④ThecoordinatesystemofM0(x)andM(x)mustbethesame,andthecoordinatesystemofeachsegmentoftherodcanbeestablishedfreely.⑤TheMohrintegralmustcovertheentirestructure.②M0——Byremovingtheactiveforce,atthepointofthegeneralizeddisplacementwherethecalculationneedstobedone,alongtherequesteddirectionofthegeneralizeddisplacement,theinternalforcegeneratedbythestructurewhenthegeneralizedunitforceisadded.①M(x):Internalforceofthestructureundertheoriginalload.③Theproductofthegeneralizedunitforceaddedandthegeneralizeddisplacementmusthavethesamedimensionaswork.ExampleThecantileverbeamsubjectedtouniformloadisshown.IfEIisaconstant,trytouseMohrtheoremtocalculatethedeflectionanddeflectionangleofsectionAatthefreeend.xlqA(a)x1(b)solution
Bendingmomentequation:Thebendingmomentcausedbyunitforceis:AccordingtoMohrtheorem,thedeflectionofsectionAis:
ExampleThecantileverbeamsubjectedtouniformloadisshown.IfEIisaconstant,trytouseMohr'stheoremtocalculatethedeflectionanddeflectionangleofsectionAatthefreeend.xlqA(a)x1(b)x1(c)Thebendingmomentcausedbytheunitcoupleis:FromtheMohrtheorem,ExampleThecantileverbeamsubjectedtouniformloadisshown.IfEIisaconstant,trytouseMohrtheoremtocalculatethedeflectionanddeflectionangleofsectionAatthefreeend.xlqA(a)x1(b)ExampleAsimpletrussstructureshownissubjectedtoforces.Letthetensile(compressive)rigidityEAofeachbarbethesame.TrytofindtherelativedisplacementbetweenthepointsBandD.31452llF2FDACB31452llDA11CBExampleAsteelframeofcircularsectionissubjectedtoforcesasshowninFigure(a).ThetorsionalrigidityofthewholeframeisGIpandEI,respectively.Iftheeffectofshearondeformationisexcluded,trytofindthedisplacementδCofsectionCalongtheverticaldirection.ABlq(a)ClThepositiveandnegativeinternalforcesineachsegmentcanstillfollowthesignregulationsfortheinternalforcesinthebarundervariousbasicdeformations.SectionBC:
SectionAB:
1x2x2x1x(b)ABC1ABl(a)ClqByusingcorrespondingformula,thenumericaldisplacementofsectionCcanbeobtainedasBC:AC:ExampleThesmallcurvaturebarisshown.TrytofindtheverticaldisplacementandtheangleofrotationofthefreeendA.TheEIisaconstant.FAdsdjjR(a)Solution:
bendingmomentcausedbyload:BendingmomentunderaconcentratedforceatpointA:A1(b)TheverticaldisplacementofpointAisExampleThesmallcurvaturebarisshown.TrytofindtheverticaldisplacementandtheangleofrotationofthefreeendA.TheEIisaconstant.FAdsdjjR(a)A1(b)A(c)AddaunitforcecoupleatpointA,wecanget:ExampleThesmallcurvaturebarisshown.TrytofindtheverticaldisplacementandtheangleofrotationofthefreeendA.TheEIisaconstant.FAdsdjjR(a)A1(b)13.3DiagrammultiplicationmethodforMohrintegrationForthebendingdeformationofstraightbeamswithequalsection,
(a)M0(x)istheinternalforcecausedbytheunitload.Itmustconsistofastraightlineorabrokenline.
LettheM(x)andM0(x)diagramstobethediagramsofmomentscausedbytheloadsandunitforce,respectively.AsectionofthegraphofM0
(x)isobliquestraightline.
Correspondingequation:CxxlSubstituteaboveequationintoequation(a),weget
(b)
M(x)dxxxCCx0CMx0()Mx()0Mxlsecondterm:ωistheareaoftheM(x)graphFirstterm:centroidM(x)()Mx()MxdxxcxCx0CMx0()MxlwhereisverticalcoordinateoftheM0(x)diagramcorrespondingtothecenterCoftheM(x)diagram.ThismethodofreducingtheMohrintegrationoperationtoanalgebraicoperationbetweengraphsisknownasthediagrammultiplicationmethod.(3)Thismethodcanbeusedtofindthedeformationordisplacementofallkindofstraightbarwithequalsection.note:(1)ωandMC0arebothgenerationalquantitieswiththesamepositiveandnegativesignsasM(x)andM0(x).(2)IfM(x)isasegmentedsmoothcurve,orifM0(x)isaline,thegraphicalmultiplicationformulashouldbeusedforthesegments,andthenfindthealgebraicsum.abh3l+a3l+blCh
n+2(n+1)llCn+2lh4
3llC4lh8
5llC8
3lToppointtriangle:
Quadraticparabola:Quadraticparabola:Nthdegreeparabola:AqBCMlaExampleAnexternallyoverhangingbeamshownisloaded.IfEIisaconstant,trytofindthedeflectionatthefreeendC.
ExampleAnexternallyoverhangingbeamshownisloaded.IfEIisaconstant,trytofindthedeflectionatthefreeendC.
28ql11Cw22wCM.C33w..AqBCMlaTheparabolicpartwithareaω1iscausedbytheuniformload.Thefoldedpartwithareasω2andω3iscausedbytheconcentratedforcecouple.
28ql11Cw22wCM..C33w.AqBCMlaThediagramM0(x)causedbytheunitforceisgiven.ThevalueofMC0correspondingtothecentroidsofthethreepartsoftheM(x)diagramcanbefoundusingtheproportionalrelationshipbetweenthelinesegments.thedeflectionoftheCsectioncanbefoundasABC101M02M03Ma28ql11Cw22wCM..C33w.ExampleAsteelframeofconstantEIisshown,withbeamBCsubjectedtoauniformloadq.Iftheeffectofshearandaxialforcesondeformationisnotconsidered,trytofindtheverticaldisplacementofsectionA.BCAq2a2asolutionFirstdrawthebendingmomentdiagramofthesteelframeunderloadasshowninFigureblew.22qa22qaBCAq2a2aTocalculatetheverticaldisplacementofsectionA,aunitforceintheverticaldirectionisappliedonsectionAandthenthecorrespondingM0(x)diagramisdrawnasfollows.CBA12a2a02M01MBCAq2a2a22qa22qa2w2C.1C1w.Accordingtothecorrespondingformulain,theareaofthemomentdiagramofthetwobarsABandBCcanbefoundasBCAq2a2a22qa22qa1C1w.2w2C.
Mc0correspondingtothecentroidsofω1andω2inFigure(d)is2a2a02M01M22qa22qa1C1w.2w2C.fromtheequationtheverticaldisplacementofsectionAcanbefound.2a2a02M01M22qa22qa2w2C.1C1w.13.4Castigliano'stheorem1.Castigliano'stheoremLetthefreeendAofastraightcantileverbeamwithEIbesubjectedtoaconcentratedforceFA.ItisnotdifficulttofindthestrainenergystoredinthecantileverbeamThestrainenergyinthebeamisnumericallyequaltotheworkoftheexternalforceW,i.e.FAlxABThedeflectionofthefreeendofthecantileverbeamis
IfwetakethepartialderivativeofthestrainenergyUofthebeamwithrespecttotheconcentratedforceFatsectionA,wehaveThisisexactlyequaltothefreeenddeflection.Therefore,ThepartialderivativeofthestrainenergywithrespecttoFisequaltothedisplacementofthepointofFalongtheforcedirection,whichisknownasCastigliano'stheorem.TheCartesiantheoremcanbedescribedas:thepartialderivativeofthedeformationenergyoftheelasticbodytoanyloadisequaltothedisplacementoftheloadapplicationpointalongtheloadapplicationdirection.
Thebeamisnowusedtoprovethistheorem.LetasetofstaticloadsF1
、F2···actingonabeam.Thedisplacementsinresponsetotheseloadsareδ1
、δ2···.Duringthedeformationprocess,theworkdonebytheaboveloadisequaltothestrainenergystoredinthebeam.ThestrainenergyUisafunctionoftheloadF1、F2···andcanbeexpressedas(a)1F2FnF1d2dnd(a)…..IfFnisgivenanincrementdFn,thestrainenergyUwillalsohaveanincrement.Theelasticstrainenergyofthebeamcanbewrittenas
(b)1F2F…..Fn+
dFnChangetheloadingorderbyfirstaddingdFntothebeamandthenactingF1、F2···.WhendFnisfirstadded,itcausesadisplacementdδnatitspointalongthesamedirection.Thestrainenergyinthebeamatthistimeshouldbe1/2dFndδn.ndFndd1F2F1d2dnd…..dFn+FnnddBecausethestrainenergycausedbyF1
、F2···isstillU,thestrainenergystoredinthebeamshouldbe
(c)1F2F1d2dnd…..dFn+FnnddSincethestrainenergywithinthelinearelasticbodyisindependentoftheloadingorder,thestrainenergycausedbythetwodifferentloadingordersshouldbeequal,i.e.Neglectingthesecondordermicro-quantity,weget
ThisispreciselytheexpressionofCastigliano'stheoremofequation.TheCastigliano'stheoremonlyappliestolinearelasticstructures.2.SpecialformsofCastigliano'stheorem(1)Truss
Ifthewholetrussconsistsofmbars,thestrainenergyofthewholestructurecanbecalculatedbyequation(13-5),i.e.AccordingtotheCastigliano'stheoremthereis
(2)Straightbeam
Forstraightbeamswhereplanebendingoccurs,thestrainenergycanbecalculatedusingequation(13-14),i.e.ApplyingCastigliano'stheorem,wegetIntheaboveequation,onlythebendingmomentM(x)isrelatedtotheloadFn.TheintegralvariablexandFnarenotrelated.Sowecanfirsttakethepartialderivativeandthenintegrateit.(3)PlanecurvedbarsThestressdistributionofsmallcurvaturebarissimilartothatofastraightbeam.ThebendingstrainenergycanbewrittenasApplyingCastigliano'stheorem,weget
(4)Combineddeformationofbars
Forbarssubjectedtothecombinedactionoftension(compression),bendingandtorsion,thestrainenergycanbewrittenfromequation(13-19),i.e.ApplyingCastigliano'stheorem,weget
Solution
SectionAC:SectionBC:
Example
FindthedeflectionangleofsectionAandthedeflectionatthemid-pointC.FBACFBACExample
FindthedeflectionangleofsectionAandthedeflectionatthemid-pointC.FBACFBACdeflectionatthemid-pointC:Example
FindthedeflectionangleofsectionAandthedeflectionatthemid-pointC.FBACFBAC3.SpecialtreatmentofCastigliano'stheoremIfweusetheCastigliano'stheoremtocalculatethegeneralizeddisplacement,theremustbethegeneralizedexternalforcecorrespondingtotheformanddirectionoftherequestedgeneralizeddisplacement.Themethodofadditionalforces:firstly,appendageneralizedforcecorrespondingtotherequestedgeneralizeddisplacement,andthenCastigliano'stheoremisapplied
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024店铺装修设计合同3篇
- 二零二四年度电子商务平台技术升级改造合同3篇
- 2024二手房精装修工程材料采购合同
- 煤矸石供应合同2024年度版
- 购买小产权房合同范本
- 2024版知识产权许可居间合同2篇
- 2024年二手房买卖及装修改造合同3篇
- 2024年度版权质押合同:某出版社的版权质押协议2篇
- 土方工程合同协议书
- 2024二手房买卖及交易风险防范合同
- 仓库管理培训课件
- 【初中生物】病毒教学课件2024-2025学年人教版生物七年级上册
- 2024小学四年级上学期家长会课件
- 2024年秋新人教版7年级上册语文教学课件 第6单元 写作:发挥联想和想象
- 2024-2025学年人教版七年级上册数学期末专项复习:期末必刷压轴60题(原卷版)
- 网络平台运营合同三篇
- 施工现场管理制度培训
- 第三单元《实际出真知 创新增才干》测试卷-高二思想政治课《哲学与人生》附答案
- 《篮球原地双手胸前传接球》教案 (三篇)
- 养鸭子产业链整合手册
- 在线考试系统开发合作协议
评论
0/150
提交评论