2025届辽宁省沈阳市和平区第一二六中学数学九上期末监测模拟试题含解析_第1页
2025届辽宁省沈阳市和平区第一二六中学数学九上期末监测模拟试题含解析_第2页
2025届辽宁省沈阳市和平区第一二六中学数学九上期末监测模拟试题含解析_第3页
2025届辽宁省沈阳市和平区第一二六中学数学九上期末监测模拟试题含解析_第4页
2025届辽宁省沈阳市和平区第一二六中学数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省沈阳市和平区第一二六中学数学九上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,抛物线与轴交于点,顶点坐标为,与轴的交点在、之间(包含端点).有下列结论:①当时,;②;③;④.其中正确的有()A.1个 B.2个 C.3个 D.4个2.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A. B. C. D.3.顺次连接梯形各边中点所组成的图形是()A.平行四边形 B.菱形 C.梯形 D.正方形4.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB=BC时,四边形ABCD是菱形;②当AC⊥BD时,四边形ABCD是菱形;③当∠ABC=90°时,四边形ABCD是菱形:④当AC=BD时,四边形ABCD是菱形;A.3个 B.4个 C.1个 D.2个5.如图,将绕点逆时针旋转,旋转角为,得到,这时点,,恰好在同一直线上,下列结论一定正确的是()A. B. C. D.6.下列方程中是一元二次方程的是()A.xy+2=1 B.C.x2=0 D.ax2+bx+c=07.边长分别为6,8,10的三角形的内切圆半径与外接圆半径的比为()A.1:5 B.4:5 C.2:10 D.2:58.函数与,在同一坐标系中的图象可能是()A.B.C.D.9.下列事件中,是必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数为偶数B.三角形的内角和等于180°C.不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球D.抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”10.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A.3cm B.4cm C.5cm D.6cm二、填空题(每小题3分,共24分)11.如图,在⊙O中,,AB=3,则AC=_____.12.如图,是以点为圆心的圆形纸片的直径,弦于点,.将阴影部分沿着弦翻折压平,翻折后,弧对应的弧为,则点与弧所在圆的位置关系为____________.13.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.14.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点在第一象限内,且在正方形网格的格点上,若是钝角的外心,则的坐标为__________.15.点(2,3)关于原点对称的点的坐标是_____.16.点P是线段AB的黄金分割点(AP>BP),则=________.17.将一元二次方程写成一般形式_____.18.如图,在中,,是边上一点,过点作,垂足为,,,,求的长.三、解答题(共66分)19.(10分)某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:)20.(6分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.21.(6分)甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和1.从这3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有两个偶数的概率是多少?(2)取出的3个小球上全是奇数的概率是多少?22.(8分)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.23.(8分)甲、乙两名同学5次数学练习(满分120分)的成绩如下表:(单位:分)测试日期11月5日11月20日12月5日12月20日1月3日甲9697100103104乙10095100105100已知甲同学这5次数学练习成绩的平均数为100分,方差为10分.(1)乙同学这5次数学练习成绩的平均数为分,方差为分;(2)甲、乙都认为自已在这5次练习中的表现比对方更出色,请你分别写出一条支持他们俩观点的理由.24.(8分)如图,抛物线的顶点为,且抛物线与直线相交于两点,且点在轴上,点的坐标为,连接.(1),,(直接写出结果);(2)当时,则的取值范围为(直接写出结果);(3)在直线下方的抛物线上是否存在一点,使得的面积最大?若存在,求出的最大面积及点坐标.25.(10分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.26.(10分)如图,在平面直角坐标系中,已知矩形的三个顶点、、.抛物线的解析式为.(1)如图一,若抛物线经过,两点,直接写出点的坐标;抛物线的对称轴为直线;(2)如图二:若抛物线经过、两点,①求抛物线的表达式.②若点为线段上一动点,过点作交于点,过点作于点交抛物线于点.当线段最长时,求点的坐标;(3)若,且抛物线与矩形没有公共点,直接写出的取值范围.

参考答案一、选择题(每小题3分,共30分)1、C【分析】①由抛物线的顶点坐标的横坐标可得出抛物线的对称轴为x=1,结合抛物线的对称性及点A的坐标,可得出点B的坐标,由点B的坐标即可断定①正确;②由抛物线的开口向下可得出a<1,结合抛物线对称轴为x=-=1,可得出b=-2a,将b=-2a代入2a+b中,结合a<1即可得出②不正确;③由抛物线与y轴的交点的范围可得出c的取值范围,将(-1,1)代入抛物线解析式中,再结合b=-2a即可得出a的取值范围,从而断定③正确;④结合抛物线的顶点坐标的纵坐标为,结合a的取值范围以及c的取值范围即可得出n的范围,从而断定④正确.综上所述,即可得出结论.【详解】解:①由抛物线的对称性可知:

抛物线与x轴的另一交点横坐标为1×2-(-1)=2,

即点B的坐标为(2,1),

∴当x=2时,y=1,①正确;

②∵抛物线开口向下,

∴a<1.

∵抛物线的顶点坐标为(1,n),

∴抛物线的对称轴为x=-=1,

∴b=-2a,

2a+b=a<1,②不正确;

③∵抛物线与y轴的交点在(1,2)、(1,2)之间(包含端点),

∴2≤c≤2.

令x=-1,则有a-b+c=1,

又∵b=-2a,

∴2a=-c,即-2≤2a≤-2,

解得:-1≤a≤-,③正确;

④∵抛物线的顶点坐标为,∴n==c-,又∵b=-2a,2≤c≤2,-1≤a≤-,

∴n=c-a,≤n≤4,④正确.

综上可知:正确的结论为①③④.

故选C.【点睛】本题考查了二次函数图象与系数的关系,解决该题型题目时,利用二次函数的系数表示出来抛物线的顶点坐标是关键.2、C【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【详解】A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选C.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是关键.3、A【解析】连接AC、BD,根据三角形的中位线定理得到EH∥AC,EH=AC,同理FG∥AC,FG=AC,进一步推出EH=FG,EH∥FG,即可得到答案.【详解】解:连接AC、BD,∵E是AD的中点,H是CD的中点,∴EH=AC,同理FG=AC,∴EH=FG,同理EF=HG,∴四边形EFGH是平行四边形,故选:A.【点睛】本题考查了中位线的性质,平行四边形的判定,属于简单题,熟悉中位线的性质是解题关键.4、D【分析】根据菱形的判定定理判断即可.【详解】解:∵四边形ABCD是平行四边形,∴①当AB=BC时,四边形ABCD是菱形;故符合题意;②当AC⊥BD时,四边形ABCD是菱形;故符合题意;③当∠ABC=90°时,四边形ABCD是矩形;故不符合题意;④当AC=BD时,四边形ABCD是矩形;故不符合题意;故选:D.【点睛】本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.5、C【分析】由旋转的性质可得AB=AD,∠BAD=α,由等腰三角形的性质可求解.【详解】∵将△ABC绕点A逆时针旋转,旋转角为α,

∴AB=AD,∠BAD=α,

∴∠B=

故选:C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.6、C【解析】分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.详解:A.是二元二次方程,故本选项错误;B.是分式方程,不是整式方程,故本选项错误;C.是一元二次方程,故本选项正确;D.当a、b、c是常数,a≠0时,方程才是一元二次方程,故本选项错误.故选C.点睛:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.7、D【分析】由面积法求内切圆半径,通过直角三角形外接圆半径为斜边一半可求外接圆半径,则问题可求.【详解】解:∵62+82=102,∴此三角形为直角三角形,∵直角三角形外心在斜边中点上,∴外接圆半径为5,设该三角形内接圆半径为r,∴由面积法×6×8=×(6+8+10)r,解得r=2,三角形的内切圆半径与外接圆半径的比为2:5,故选D.【点睛】本题主要考查了直角三角形内切圆和外接圆半径的有关性质和计算方法,解决本题的关键是要熟练掌握面积计算方法.8、D【解析】由二次函数y=ax2+a中一次项系数为0,我们易得函数y=ax2+a的图象关于y轴对称,然后分当a>0时和a<0时两种情况,讨论函数y=ax2+a的图象与函数y=(a≠0)的图象位置、形状、顶点位置,可用排除法进行解答.【详解】解:由函数y=ax2+a中一次项系数为0,

我们易得函数y=ax2+a的图象关于y轴对称,可排除A;

当a>0时,函数y=ax2+a的图象开口方向朝上,顶点(0,a)点在x轴上方,可排除C;

当a<0时,函数y=ax2+a的图象开口方向朝下,顶点(0,a)点在x轴下方,

函数y=(a≠0)的图象位于第二、四象限,可排除B;

故选:D.【点睛】本题考查的知识点是函数的表示方法-图象法,熟练掌握二次函数及反比例函数图象形状与系数的关系是解答本题的关键.9、B【分析】根据事件发生的可能性大小判断相应事件的类型.【详解】解:A、掷一枚质地均匀的骰子,向上一面的点数为偶数是随机事件;B、三角形的内角和等于180°是必然事件;C、不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球是随机事件;D、抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”是随机事件;故选:B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、D【分析】根据垂径定理可知AC的长,再根据勾股定理即可求出OC的长.【详解】解:连接OA,如图:∵AB=16cm,OC⊥AB,∴AC=AB=8cm,在RtOAC中,OC===6(cm),故选:D.【点睛】本题考查的是垂径定理、勾股定理,熟练掌握垂径定理,构造出直角三角形是解答此题的关键.二、填空题(每小题3分,共24分)11、1.【分析】根据圆心角、弧、弦、弦心距之间的关系解答即可.【详解】解:∵在⊙O中,,AB=1,

∴AC=AB=1.

故答案为1.【点睛】本题考查圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等.12、点在圆外【分析】连接OC,作OF⊥AC于F,交弧于G,判断OF与FG的数量关系即可判断点和圆的位置关系.【详解】解:如图,连接OC,作OF⊥AC于F,交弧于G,∵,∴OA=OB=OC=5,AE=7,OE=2,∵,∴,∴,∵OF⊥AC,∴CF=AC,∴,∵,∴,∴,∴,∴点与弧所在圆的位置关系是点在圆外.故答案是:点在圆外.【点睛】本题考查了点和圆位置关系,利用垂径定理进行有关线段的计算,通过构造直角三角形是解题的关键.13、1【解析】抛物线的解析式为y=x2-6x-16,可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=1.【详解】抛物线的解析式为y=x2-6x-16,

则D(0,-16)

令y=0,解得:x=-2或8,

函数的对称轴x=-=3,即M(3,0),

则A(-2,0)、B(8,0),则AB=10,

圆的半径为AB=5,

在Rt△COM中,

OM=5,OM=3,则:CO=4,

则:CD=CO+OD=4+16=1.故答案是:1.【点睛】考查的是抛物线与x轴的交点,涉及到圆的垂径定理.14、或【解析】由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点即可.【详解】解:由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点,如图所示,由于是钝角三角形,故舍去(5,2),故答案为或.【点睛】本题考查了三角形的外心,即到三角形三个顶点距离相等的点,解题的关键是画图找到C点.15、(-2,-3).【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点P(2,3)关于原点对称的点的坐标是(−2,−3).故答案为(-2,-3).16、.【解析】解:∵点P是线段AB的黄金分割点(AP>BP),∴=.故答案为.点睛:本题考查了黄金分割的定义,牢记黄金分割比是解题的关键.17、【分析】先去括号,然后移项,最后变形为一般式.【详解】故答案为:.【点睛】本题考查完全平方公式、去括号和移项,需要注意,移项是需要变号的.18、.【分析】在中,根据求得CE,在中,根据求得BC,最后将CE,BC的值代入即可.【详解】解:在中,,.在中,,.的长为.【点睛】本题考查了解直角三角形,熟练掌握三角函数定义是解题的关键.三、解答题(共66分)19、2.6米【解析】试题分析:过点C作CD⊥AB于点D,根据题意得出∠CAD=30°,∠CBD=60°,分别根据Rt△ACD和Rt△BCD的三角函数将AD和BD用含CD的代数式表示,然后根据AB=3得出答案.试题解析:过作于点∵探测线与地面的夹角为和,∴,,在Rt中,,∴,在Rt中,,∴,又∵∴解得,∴生命所在点的深度约为米.20、(1)∠DAF=36°;(2)证明见解析;(3)证明见解析.【解析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;(3)连接AO,求出∠OAD=90°即可.【详解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)证明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴,∴AE2=EF×ED;(3)证明:连接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.【点睛】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.21、(1);(2).【分析】先画出树状图得到所有等可能的情况数;(1)找出3个小球上恰好有两个偶数的情况数,然后利用概率公式进行计算即可;(2)找出3个小球上全是奇数的情况数,然后利用概率公式进行计算即可.【详解】根据题意,画出如下的“树状图”:从树状图看出,所有可能出现的结果共有12个;(1)取出的3个小球上恰好有两个偶数的结果有4个,即1,4,6;2,3,6;2,4,1;2,5,6;所以(两个偶数);(2)取出的3个小球上全是奇数的结果有2个,即1,3,1;1,5,1;所以,(三个奇数).【点睛】本题考查的是用树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)y=-(x-6)2+2.6;(2)球能过网;球会出界.【解析】解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴y=a(x-6)2+h过(0,2)点,∴2=a(0-6)2+2.6,解得:a=-,所以y与x的关系式为:y=-(x-6)2+2.6.(2)当x=9时,y=-(x-6)2+2.6=2.45>2.43,所以球能过网;当y=0时,-(x-6)2+2.6=0,解得:x1=6+2>18,x2=6-2(舍去),所以会出界.23、(1)100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【分析】(1)根据平均数公式和方差公式计算即可;(2)通过成绩逐渐的变化情况或100分以上(含100分)的次数分析即可.【详解】解:(1)乙=乙=故答案为:100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【点睛】此题考查的是求平均数和方差,掌握平均数公式和方差公式是解决此题的关键.24、(1)1,-1,1;(2);(3)最大值为,点.【分析】(1)将代入求得k值,求得点A的坐标,再将A、B的坐标代入即可求得答案;(2)在图象上找出抛物线在直线下方自变量的取值范围即可;(3)设点P的坐标为,则点Q的坐标为,求得的长,利用三角形面积公式得到,然后根据二次函数的性质即可解决问题.【详解】(1)∵直线经过点,∴,解得:,∵直线与x轴交于点A,令,则,点A的坐标为,∵抛物线与直线相交于两点,∴,解得:,故答案为:,,;(2)∵抛物线与直线相交于A,两点,观察图象,抛物线在直线下方时,,∴当时,则的取值范围为:,故答案为:;(3)过点P作y轴的平行线交直线于点Q,设点P的坐标为,则点Q的坐标为,∴,,∴,当时,的面积有最大值为,此时P点坐标为;故答案为:面积有最大值为,P点坐标为;【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式;会运用数形结合的思想解决数学问题.25、树高为6.5米.【分析】根据已知易得出△D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论