湖北省荆州松滋市2025届数学九上期末监测试题含解析_第1页
湖北省荆州松滋市2025届数学九上期末监测试题含解析_第2页
湖北省荆州松滋市2025届数学九上期末监测试题含解析_第3页
湖北省荆州松滋市2025届数学九上期末监测试题含解析_第4页
湖北省荆州松滋市2025届数学九上期末监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省荆州松滋市2025届数学九上期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把CDB旋转90°,则旋转后点D的对应点的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)2.若点在抛物线上,则的值()A.2021 B.2020 C.2019 D.20183.如果函数的图象与双曲线相交,则当时,该交点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在一个不透明的布袋中有红色、黑色的球共10个,它们除颜色外其余完全相同.小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,则口袋中黑球的个数很可能是()A.4 B.5 C.6 D.75.如图,在△ABC中,点G为△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则△ADE与四边形DBCE的面积比为()A. B. C. D.6.如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为()A.2 B. C. D.7.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()A.24 B.36 C.40 D.908.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内上的一点,若,则的度数是A.B.C.D.9.已知二次函数的图象如图所示,下列结论:①,②,③,④,其中正确结论的个数为()A.4个 B.3个 C.2个 D.1个10.如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN,沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②AB=BP;③PN=PG;④PM=PF;⑤若连接PE,则△PEG∽△CMD.其中正确的个数为()A.5个 B.4个 C.3个 D.2个11.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:;;;,其中正确的是()A. B. C. D.12.已知反比例函数y=﹣,下列结论不正确的是()A.函数的图象经过点(﹣1,3) B.当x<0时,y随x的增大而增大C.当x>﹣1时,y>3 D.函数的图象分别位于第二、四象限二、填空题(每题4分,共24分)13.一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是个红珠子,个白珠子和个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续次摸出的都是红珠子的情况下,第次摸出红珠子的概率是_____.14.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.15.关于x的一元二次方程x2+4x﹣2k=0有实数根,则k的取值范围是_____.16.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.17.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.18.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.三、解答题(共78分)19.(8分)某商店经营家居收纳盒,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每个收纳盒售价不能高于40元.设每个收纳盒的销售单价上涨了元时(为正整数),月销售利润为元.(1)求与的函数关系式.(2)每个收纳盒的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?20.(8分)如图,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象相交于A,B两点,与x轴,y轴分别交于C,D两点,tan∠DCO=,过点A作AE⊥x轴于点E,若点C是OE的中点,且点A的横坐标为﹣1.,(1)求该反比例函数和一次函数的解析式;(2)连接ED,求△ADE的面积.21.(8分)某数学兴趣小组根据学习函数的经验,对分段函数的图象与性质进行了探究,请补充完整以下的探究过程.x…-2-101234…y…30-1010-3…(1)填空:a=.b=.(2)①根据上述表格数据补全函数图象;②该函数图象是轴对称图形还是中心对称图形?(3)若直线与该函数图象有三个交点,求t的取值范围.22.(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.23.(10分)如图,在南北方向的海岸线上,有两艘巡逻船,现均收到故障船的求救信号.已知两船相距海里,船在船的北偏东60°方向上,船在船的东南方向上,上有一观测点,测得船正好在观测点的南偏东75°方向上.(1)分别求出与,与间的距离和;(本问如果有根号,结果请保留根号)(此提示可以帮助你解题:∵,∴)(2)已知距观测点处100海里范围内有暗礁,若巡逻船沿直线去营救船,去营救的途中有无触礁的危险?(参考数据:)24.(10分)在平面直角坐标系xOy中,抛物线与y轴交于点A.(1)直接写出点A的坐标;(2)点A、B关于对称轴对称,求点B的坐标;(3)已知点,.若抛物线与线段PQ恰有两个公共点,结合函数图象,求a的取值范围.25.(12分)空地上有一段长为am的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为110m.(1)已知a=30,矩形菜园的一边靠墙,另三边一共用了110m木栏,且围成的矩形菜园而积为1000m1.如图1,求所利用旧墙AD的长;(1)已知0<a<60,且空地足够大,如图1.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.26.已知,如图,抛物线的顶点为,经过抛物线上的两点和的直线交抛物线的对称轴于点.(1)求抛物线的解析式和直线的解析式.(2)在抛物线上两点之间的部分(不包含两点),是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.(3)若点在抛物线上,点在轴上,当以点为顶点的四边形是平行四边形时,直接写出满足条件的点的坐标.

参考答案一、选择题(每题4分,共48分)1、C【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【详解】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点在x轴上,O=2,所以,(﹣2,0),②若逆时针旋转,则点到x轴的距离为10,到y轴的距离为2,所以,(2,10),综上所述,点的坐标为(2,10)或(﹣2,0).故选:C.【点睛】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.2、B【分析】将P点代入抛物线解析式得到等式,对等式进行适当变形即可.【详解】解:将代入中得所以.故选:B.【点睛】本题考查二次函数上点的坐标特征,等式的性质.能根据等式的性质进行适当变形是解决此题的关键.3、C【分析】直线的图象经过一、三象限,而函数y=2x的图象与双曲线y(k≠0)相交,所以双曲线也经过一、三象限,则当x<0时,该交点位于第三象限.【详解】因为函数y=2x的系数k=2>0,所以函数的图象过一、三象限;又由于函数y=2x的图象与双曲线y(k≠0)相交,则双曲线也位于一、三象限;故当x<0时,该交点位于第三象限.故选:C.【点睛】本题考查了反比例函数的图象和性质以及正比例函数的图象和性质,要掌握它们的性质才能灵活解题.4、C【分析】根据题意得出摸出黑球的频率,继而根据频数=总数×频率计算即可.【详解】∵小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,∴口袋中黑球的个数可能是10×60%=6个.故选:C.【点睛】本题主要考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.5、A【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明△ADE∽△ABC,根据相似三角形的性质得到==,然后根据比例的性质得到△ADE与四边形DBCE的面积比.【详解】解:连接AG并延长交BC于H,如图,∵点G为△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE与四边形DBCE的面积比=.故选:A.【点睛】本题考查了三角形的重心与相似三角形的性质与判定.重心到顶点的距离与重心到对边中点的距离之比为2∶1.6、B【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,

∵P(2,4),

∴OA=2,AP=4,.

∴∴.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.7、D【分析】设袋中有黑球x个,根据概率的定义列出方程即可求解.【详解】设袋中有黑球x个,由题意得:=0.6,解得:x=90,经检验,x=90是分式方程的解,则布袋中黑球的个数可能有90个.故选D.【点睛】此题主要考查概率的计算,解题的关键是根据题意设出未知数列方程求解.8、D【分析】根据圆周角定理求出,根据互余求出∠COD的度数,再根据等腰三角形性质即可求出答案.【详解】解:连接OD,,,,,.故选D.【点睛】本题考查了圆周角定理,等腰三角形性质等知识.熟练应用圆周角定理是解题的关键.9、B【分析】由抛物线的开口方向、对称轴、与y轴的交点位置,可判断a、b、c的符号,可判断①,利用对称轴可判断②,由当x=-2时的函数值可判断③,当x=1时的函数值可判断④,从而得出答案.【详解】解:∵抛物线开口向下,与y轴的交点在x轴上方,∴a<0,c>0,∵0<-<1,∴b>0,且b<-2a,∴abc<0,2a+b<0,故①不正确,②正确;

∵当x=-2时,y<0,∴4a-2b+c<0,故③正确;∵当x=1时,y>0,∴a+b+c>0,又c>0,∴a+b+2c>0,故④正确;

综上可知正确的有②③④,

故选:B.【点睛】本题主要考查二次函数图象与系数之间的关系,解题关键是注意掌握数形结合思想的应用.10、B【分析】根据折叠的性质得到,于是得到,求得是直角三角形;设AB=x,则AD=2x,由相似三角形的性质可得CP=x,可求BP=PG=x=PN,可判断②③,由折叠的性质和平行线的性质可得∠PMF=∠FPM,可证PF=FM;由,且∠G=∠D=90°,可证△PEG∽△CMD,则可求解.【详解】∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME=×180°=90°,∴△CMP是直角三角形;故①符合题意;∵AD=2AB,∴设AB=x,则AD=BC=2x,∵将矩形ABCD对折,得到折痕MN;∴AM=DM=AD=x=BN=NC,∴CMx,∵∠PMC=90°=∠CNM,∠MCP=∠MCN,∴△MCN∽△NCP,∴CM2=CN•CP,∴3x2=x×CP,∴CP=x,∴∴AB=BP,故②符合题意;∵PN=CP﹣CN=x-x=x,∵沿着MP折叠,使得AM与EM重合,∴BP=PG=x,∴PN=PG,故③符合题意;∵AD∥BC,∴∠AMP=∠MPC,∵沿着MP折叠,使得AM与EM重合,∴∠AMP=∠PMF,∴∠PMF=∠FPM,∴PF=FM,故④不符合题意,如图,∵沿着MP折叠,使得AM与EM重合,∴AB=GE=x,BP=PG=x,∠B=∠G=90°∴,∵,∴,且∠G=∠D=90°,∴△PEG∽△CMD,故⑤符合题意,综上:①②③⑤符合题意,共4个,故选:B.【点睛】本题是相似形综合题,考查了相似三角形的判定和性质,折叠的性质,勾股定理,直角三角形的性质,矩形的性质等知识,利用参数表示线段的长度是解题的关键.11、C【解析】试题解析:①和的底分别相等,高也相等,所以它们的面积也相等,故正确.②和的底分别相等,高也相等,所以它们的面积也相等,并不是倍的关系.故错误.③由于是的中点,所以和的相似比为,所以它们的面积之比为.故错误.④和的底相等,高和则是的关系,所以它们的面积之比为.故正确.综上所述,符合题意的有①和④.故选C.12、C【分析】根据反比例函数的性质:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.进行判断即可.【详解】A、反比例函数y=﹣的图象必经过点(﹣1,3),原说法正确,不合题意;B、k=﹣3<0,当x<0,y随x的增大而增大,原说法正确,不符合题意;C、当x>﹣1时,y>3或y<0,原说法错误,符合题意;D、k=﹣3<0,函数的图象分别位于第二、四象限,原说法正确,不符合题意;故选:C.【点睛】本题主要考查反比例函数的性质,掌握反比例函数的图象和性质,是解题的关键.二、填空题(每题4分,共24分)13、.【分析】每次只摸出一个珠子时,布袋中共有珠子个,其中红珠子个,可以直接应用求概率的公式.【详解】解:因为每次只摸出一个珠子时,布袋中共有珠子个,其中红珠子个,所以第次摸出红珠子的概率是.故答案是:.【点睛】本题考查概率的意义,解题的关键是熟练掌握概率公式.14、1【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.15、k≥﹣1【分析】根据判别式的意义得到△=41+8k≥0,然后解不等式即可.【详解】∵一元二次方程x1+4x﹣1k=0有实数根,∴△=41+8k≥0,解得,k≥﹣1.故答案为:k≥﹣1.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(1)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16、(2,10)或(﹣2,0)【解析】∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).17、-1【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.18、3n+1.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【详解】解:由图可得,

图①中棋子的个数为:3+1=5,

图②中棋子的个数为:5+3=8,

图③中棋子的个数为:7+4=11,

……

则第n个“T”字形需要的棋子个数为:(1n+1)+(n+1)=3n+1,

故答案为3n+1.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.三、解答题(共78分)19、(1)(0≤x≤10);(2)32元;(3)售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【分析】(1)利用利润=每件的利润×数量即可表示出与的函数关系式;(2)令第(1)问中的y值为2520,解一元二次方程即可得出x的值;(3)根据二次函数的性质求得最大值即可.【详解】(1)根据题意有:每个收纳盒售价不能高于40元(2)令即解得或此时售价为30+2=32元(3)∵为正整数∴当或时,y取最大值,最大值为此时的售价为30+6=6元或30+7=37元答:售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查二次函数的应用,掌握二次函数的性质是解题的关键.20、(1)y=﹣x﹣3,y=﹣;(2)S△ADE=2.【分析】(1)根据题意求得OE=1,OC=2,Rt△COD中,tan∠DCO=,OD=3,即可得到A(-1,3),D(0,-3),C(-2,0),运用待定系数法即可求得反比例函数与一次函数的解析式;

(2)求得两个三角形的面积,然后根据S△ADE=S△ACE+S△DCE即可求得.【详解】(1)∵AE⊥x轴于点E,点C是OE的中点,且点A的横坐标为﹣1,∴OE=1,OC=2,∵Rt△COD中,tan∠DCO=,∴OD=3,∴A(﹣1,3),∴D(0,﹣3),C(﹣2,0),∵直线y=ax+b(a≠0)与x轴、y轴分别交于C、D两点,∴,解得,∴一次函数的解析式为y=﹣x﹣3,把点A的坐标(﹣1,3)代入,可得3=,解得k=﹣12,∴反比例函数解析式为y=﹣;(2)S△ADE=S△ACE+S△DCE=EC•AE+EC•OD=×2×3+=2.21、(1)﹣1,1;(2)①见解析;②函数图象是中心对称图形;(3)【分析】(1)把(1,0),(2,1)代入y=ax2+bx-3构建方程组即可解决问题.

(2)利用描点法画出函数图象,根据中心对称的定义即可解决问题.

(3)求出直线y=x+t与两个二次函数只有一个交点时t的值即可判断.【详解】解:(1)把(1,0),(2,1)代入y=ax2+bx﹣3得,解得,故答案为:﹣1,1.(2)①描点连线画出函数图象,如图所示;②该函数图象是中心对称图形.(3)由,消去y得到2x2﹣x﹣2﹣2t=0,当△=0时,1+16+16t=0,,由消去y得到2x2﹣7x+2t+6=0,当△=0时,19﹣16t﹣18=0,,观察图象可知:当时,直线与该函数图象有三个交点.【点睛】本题考查中心对称,二次函数的性质,一元二次方程的根的判别式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1);(2)【分析】(1)利用概率公式直接计算即可;

(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23、(1)与之间的距离为200海里,与之间的距离为海里;(2)巡逻船沿直线航线,在去营救的途中没有触暗礁危险.【分析】(1)作CE⊥AB于E,设AE=x海里,则海里.根据,求得x的值后即可求得AC的长,过点D作DF⊥AC于点F,同理求出AD的长;(2)根据(1)中的结论得出DF的长,再与100比较即可得到答案.【详解】解:(1)如图,过点作于,设海里,过点作于点,设海里,由题意得:,,在中,,在中,.∴,解得:,∴.在中,,则.则.∴,解得:,∴AD=2y=答:与之间的距离为200海里,与之间的距离为海里.(2)由(1)可知,,≈1.3(海里),∵,∴巡逻船沿直线航线,在去营救的途中没有触暗礁危险.【点睛】本题考查的是解直角三角形的应用——方向角问题,能根据题意作出辅助线,构造出直角三角形是解答此题的关键.24、(1)(0,-3);(2)B(2,-3);(3)或【分析】(1)题干要求直接写出点A的坐标,将x=0代入即可求出;(2)由题意知点A、B关于对称轴对称,求出对称轴从而即可求点B的坐标;(3)结合函数图象,抛物线与线段PQ恰有两个公共点,分别对有两个公共点的情况进行讨论求解.【详解】解:(1)由题意抛物线与y轴交于点A,将x=0代入求出坐标为;(2)∵;∴.(3)当抛物线过点P(4,0)时,,∴.此时,抛物线与线段PQ有两个公共点.当抛物线过点时,a=1,此时,抛物线与线段PQ有两个公共点.∵抛物线与线段PQ恰有两个公共点,∴.当抛物线开口向下时,.综上所述,当或时,抛物线与线段PQ恰有两个公共点.【点睛】本题考查二次函数图像相关性质,熟练掌握二次函数图像相关性质是解题的关键.25、(1)旧墙AD的长为10米;(1)当0<a<40时,围成长和宽均为米的矩形菜园面积最大,最大面积为平方米;当40≤a<60时,围成长为a米,宽

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论