版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省高碑店市2025届数学九上期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知一个扇形的半径为60cm,圆心角为180°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()A.15cm B.20cm C.25cm D.30cm2.由不能推出的比例式是()A. B.C. D.3.如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF=2,则BD的长是()A.2 B.3 C. D.4.已知一元二次方程x2+kx﹣5=0有一个根为1,k的值为()A.﹣2 B.2 C.﹣4 D.45.若与相似且对应中线之比为,则周长之比和面积比分别是()A., B., C., D.,6.如图,四边形是边长为5的正方形,E是上一点,,将绕着点A顺时针旋转到与重合,则()A. B. C. D.7.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C. D.8.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④c=﹣3a,其中正确的命题是()A.①② B.②③ C.①③ D.①③④9.小明沿着坡度为的山坡向上走了,则他升高了()A. B. C. D.10.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,则cosB的值为()A. B. C. D.11.如图,菱形ABCD中,∠B=70°,AB=3,以AD为直径的⊙O交CD于点E,则弧DE的长为()A.π B.π C.π D.π12.如图,正方形中,为的中点,的垂直平分线分别交,及的延长线于点,,,连接,,,连接并延长交于点,则下列结论中:①;②;③;④;⑤;⑥;⑦.正确的结论的个数为()A.3 B.4 C.5 D.6二、填空题(每题4分,共24分)13.如图,△ABC中,DE∥BC,,△ADE的面积为8,则△ABC的面积为______14.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A=°.15.如图,在平面直角坐标系中,抛物线与轴的正半轴相交于点,其顶点为,将这条抛物线绕点旋转后得到的抛物线与轴的负半轴相交于点,其顶点为,连接,,,,则四边形的面积为__________;16.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.17.如图,PA、PB是⊙O的两条切线,点A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB=___°.18.若圆中一条弦长等于半径,则这条弦所对的圆周角的度数为______.三、解答题(共78分)19.(8分)已知x2+xy+y=12,y2+xy+x=18,求代数式3x2+3y2﹣2xy+x+y的值.20.(8分)如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联结AG并延长交BC于点D.(1)若,用向量、表示向量;(2)若∠B=∠ACE,AB=6,AC=2,BC=9,求EG的长.21.(8分)如图,抛物线的图象经过点,顶点的纵坐标为,与轴交于两点.(1)求抛物线的解析式.(2)连接为线段上一点,当时,求点的坐标.22.(10分)如图,在中,是边上的一点,若,求证:.23.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,且∠BAD=80°,求∠DAC的度数.24.(10分)如图,将绕点顺时针旋转得到,点恰好落在的延长线上,连接.分别交于点交于点.求的角度;求证:.25.(12分)在平面直角坐标系中,直线交轴于点,交轴于点,,点的坐标是.(1)如图1,求直线的解析式;(2)如图2,点在第一象限内,连接,过点作交延长线于点,且,过点作轴于点,连接,设点的横坐标为,的而积为S,求S与的函数关系式(不要求写出自变量的取值范围);(3)如图3,在(2)的条件下,过点作轴,连接、,若,时,求的值.26.如图,在Rt△ABC中,∠C=90°,过AC上一点D作DE⊥AB于E,已知AB=10cm,AC=8cm,BE=6cm,求DE.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据底面周长=展开图的弧长可得出结果.【详解】解:设这个圆锥的底面半径为r,
根据题意得2πr=,
解得r=30(cm),
即这个圆锥的底面半径为30cm.
故选:D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2、C【解析】根据比例的性质依次判断即可.【详解】设x=2a,y=3a,A.正确,不符合题意;B.,故该项正确,不符合题意;C.,故该项不正确,符合题意;D.正确,不符合题意;【点睛】此题考查比例的基本性质,熟记性质并运用解题是解此题的关键.3、C【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB=∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴,即,解得:x=,即BD=,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.4、D【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于k的一次方程1﹣5+k=0,然后解一次方程即可.【详解】解:把x=1代入方程得1+k﹣5=0,解得k=1.故选:D.【点睛】本题考查一元二次方程的解.熟记一元二次方程解得定义是解决此题的关键.5、B【分析】直接根据相似三角形的性质进行解答即可.【详解】解:与相似,且对应中线之比为,其相似比为,与周长之比为,与面积比为,故选:B.【点睛】本题考查的是相似三角形的性质,熟知相似三角形周长的比等于相似比,相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比,相似三角形面积比是相似比的平方是解答此题的关键.6、D【分析】根据旋转变换的性质求出、,根据勾股定理计算即可.【详解】解:由旋转变换的性质可知,,∴正方形的面积=四边形的面积,∴,,∴,,∴.故选D.【点睛】本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.7、D【解析】试题解析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故选D.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征.8、D【分析】①观察图象可得,当x=1时,y=0,即a+b+c=0;②对称轴x=﹣1,即﹣=﹣1,b=2a;③抛物线与x轴的一个交点为(1,0),对称轴为x=﹣1,即可得ax2+bx+c=0的两根分别为﹣3和1;④当x=1时,y=0,即a+b+c=0,对称轴x=﹣1,即﹣=﹣1,b=2a,即可得c=﹣3a.【详解】解:观察图象可知:①当x=1时,y=0,即a+b+c=0,∴①正确;②对称轴x=﹣1,即﹣=﹣1,b=2a,∴②错误;③∵抛物线与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0)∴ax2+bx+c=0的两根分别为﹣3和1,∴③正确;④∵当x=1时,y=0,即a+b+c=0,对称轴x=﹣1,即﹣=﹣1,b=2a,∴c=﹣3a,∴④正确.所以正确的命题是①③④.故选:D.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.9、A【分析】根据题意作出图形,然后根据坡度为1:2,设BC=x,AC=2x,根据AB=1000m,利用勾股定理求解.【详解】解:根据题意作出图形,∵坡度为1:2,∴设BC=x,AC=2x,∴,∵AB=1000m,∴,解得:,故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡度构造直角三角形然后求解.10、B【详解】解:在Rt△ABC中,∠C=90°,AC=3,AB=5,由勾股定理,得:BC===1.cosB==,故选B.【点睛】本题考查锐角三角函数的定义.11、A【分析】连接OE,由菱形的性质得出∠D=∠B=70°,AD=AB=3,得出OA=OD=1.5,由等腰三角形的性质和三角形内角和定理求出∠DOE=40°,再由弧长公式即可得出答案.【详解】连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=70°,AD=AB=3,∴OA=OD=1.5,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°﹣2×70°=40°,∴的长=.故选:A.【点睛】此题考查菱形的性质、弧长计算,根据菱形得到需要的边长及角度即可代入公式计算弧长.12、B【分析】①作辅助线,构建三角形全等,证明△ADE≌△GKF,则FG=AE,可得FG=2AO;②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,证明△ADE∽△HOA,得,于是可求BH及HE的值,可作出判断;③分别表示出OD、OC,根据勾股定理逆定理可以判断;④证明∠HEA=∠AED=∠ODE,OE≠DE,则∠DOE≠∠HEA,OD与HE不平行;
⑤由②可得,根据AR∥CD,得,则;⑥证明△HAE∽△ODE,可得,等量代换可得OE2=AH•DE;⑦分别计算HC、OG、BH的长,可得结论.【详解】解:①如图,过G作GK⊥AD于K,
∴∠GKF=90°,
∵四边形ABCD是正方形,
∴∠ADE=90°,AD=AB=GK,
∴∠ADE=∠GKF,
∵AE⊥FH,
∴∠AOF=∠OAF+∠AFO=90°,
∵∠OAF+∠AED=90°,
∴∠AFO=∠AED,
∴△ADE≌△GKF,
∴FG=AE,
∵FH是AE的中垂线,
∴AE=2AO,
∴FG=2AO,
故①正确;②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,,易得△ADE∽△HOA,,,Rt△AHO中,由勾股定理得:AH=,∴BH=AH-AB=,∵HE=AH=,∴HE=5BH;
故②正确;③,,∴,∴OC与OD不垂直,故③错误;
④∵FH是AE的中垂线,
∴AH=EH,
∴∠HAE=∠HEA,
∵AB∥CD,
∴∠HAE=∠AED,
Rt△ADE中,∵O是AE的中点,
∴OD=AE=OE,
∴∠ODE=∠AED,
∴∠HEA=∠AED=∠ODE,
当∠DOE=∠HEA时,OD∥HE,
但AE>AD,即AE>CD,
∴OE>DE,即∠DOE≠∠HEA,
∴OD与HE不平行,
故④不正确;
⑤由②知BH=,,延长CM、BA交于R,
∵RA∥CE,
∴∠ARO=∠ECO,
∵AO=EO,∠ROA=∠COE,
∴△ARO≌△ECO,
∴AR=CE,
∵AR∥CD,,故⑤正确;
⑥由①知:∠HAE=∠AEH=∠OED=∠ODE,
∴△HAE∽△ODE,∵AE=2OE,OD=OE,
∴OE•2OE=AH•DE,
∴2OE2=AH•DE,
故⑥正确;
⑦由②知:HC=,∵AE=2AO=OH=,tan∠EAD=,,,∵FG=AE,,∴OG+BH=,∴OG+BH≠HC,
故⑦不正确;
综上所述,本题正确的有;①②⑤⑥,共4个,
故选:B.【点睛】本题是相似三角形的判定与性质以及勾股定理、线段垂直平分线的性质、正方形的性质的综合应用,正确作辅助线是关键,解答时证明三角形相似是难点.二、填空题(每题4分,共24分)13、18.【解析】∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵,∴,∴.14、55.【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.15、32【分析】利用抛物线的解析式算出M的坐标和A的坐标,根据对称算出B和N的坐标,再利用两个三角形的面积公式计算和即可.【详解】∵,∴M(2,-4),令,解得x1=0,x2=4,∴A(0,4),∵B,N分别关于原点O的对称点是A,M,∴B(-4,-0),N(-2,4),∴AB=8,∴四边形AMBN的面积为:2S△ABM=,故答案为:32.【点睛】本题考查二次函数的性质,关键在于利用对称性得出坐标点.16、【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案为.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.17、70°【分析】连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案【详解】解:连接OA、OB,∠ACB=55°,∴∠AOB=110°∵PA、PB是⊙O的两条切线,点A、B为切点,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=70°故答案为:70【点睛】本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键18、30°或150°【解析】与半径相等的弦与两条半径可构成等边三角形,所以这条弦所对的圆心角为60°,而弦所对的圆周角两个,根据圆内接四边形对角互补可知,这两个圆周角互补,其中一个圆周角的度数为12×60故答案为30°或150°.三、解答题(共78分)19、或【分析】分别将已知的两个等式相加和相减,得到(x+y)2+(x+y)=30,(x+y-1)(x﹣y)=﹣6,即可求得x、y的值,再求代数式的值即可.【详解】解:由x2+xy+y=12①,y2+xy+x=18②,①+②,得(x+y)2+(x+y)=30③,①﹣②,得(x+y-1)(x﹣y)=﹣6④,由③得(x+y+6)(x+y﹣5)=0,∴x+y=﹣6或x+y=5⑤,∴将⑤分别代入④得,x﹣y=或x﹣y=﹣,∴或当时,当时,
故答案为:或【点睛】本题考查解二元一次方程组;理解题意,将已知式子进行合理的变形,再求二元一次方程组的解是解题的关键.20、(1)(2)EG=3.【解析】(1)由点G是△ABC的重心,推出再根据三角形法则求出即可解决问题;
(2)想办法证明△AEG∽△ABD,可得【详解】(1)∵点G是△ABC的重心,∴∵∴(2)∵∠B=∠ACE,∠CAE=∠BAC,∴△ACE∽△ABC,∴∴AE=4,此时∵∠EAG=∠BAD,∴△AEG∽△ABD,∴【点睛】考查平面向量的线性运算以及相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.21、(1)或;(2)【分析】(1)将点C、D的坐标代入抛物线表达式,即可求解;(2)当△AOC∽△AEB时,===,求出yE=,即可求出点E坐标.【详解】解:(1)由题可列方程组:,解得:,∴抛物线解析式为:或;(2)由题,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得,∴直线AC的解析式为:y=-2x-2,
当△AOC∽△AEB时,===,∵S△AOC=1,∴S△AEB=,∴AB×|yE|=,AB=4,则yE=,则点E(,).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、三角形相似、图形的面积计算等.22、见解析【分析】根据相似三角形的判定,由题意可得,进而根据相似三角形的性质,可得,推论即可得出结论.【详解】证明:∵,∴,∴,即.【点睛】本题主要考察了相似三角形的判定以及性质,灵活运用相关性质是解题的关键.23、40°【解析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠DAC=∠CAO,得到答案.【详解】如图:连接OC,∵CD是⊙O的切线,∴OC⊥CD,又∵AD⊥CD,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠DAC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 顶撞领导检讨书范文
- 投标财务状况承诺书
- 队长工作计划5篇
- 施工组织设计-宜川至瓦子街高速公路QL2合同段施工组织设计
- DB12-T 602-2023 城市轨道交通运营安全管理规范
- 甘肃省定西市(2024年-2025年小学五年级语文)统编版期中考试((上下)学期)试卷及答案
- 四川省凉山彝族自治州(2024年-2025年小学五年级语文)人教版小升初模拟(下学期)试卷及答案
- 2023年高效沼气脱硫设备投资申请报告
- 2024年医学诊断服务项目资金筹措计划书代可行性研究报告
- 高二体育课与健康教案集
- GB/T 3293.1-1998鞋号
- GB/T 31489.1-2015额定电压500 kV及以下直流输电用挤包绝缘电力电缆系统第1部分:试验方法和要求
- 建设工程企业资质改革措施表2020
- DV-PV培训课件:设计验证和生产确认
- 五大领域教学法(课堂PPT)
- 坐骨神经痛及治疗课件
- 数控车床编程基本学习培训课件
- 福建省福州市长乐区2022-2023学年八年级上学期期中英语试题(含答案解析)
- 部编版语文教材全套目录小学到高中(2022年)
- 小学生血液知识讲座课件
- 小讲课-中心静脉压的测量及临床意义
评论
0/150
提交评论