版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市宣武区名校数学九上期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28° B.32° C.42° D.52°2.二次函数y=x2+2的对称轴为()A. B. C. D.3.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y1)是函数图象上的两点,则y1<y1;④﹣<a<﹣.其中正确结论有()A.1个 B.1个 C.3个 D.4个4.已知2x=3y(y≠0),则下面结论成立的是()A. B.C. D.5.若点,,在反比例函数的图象上,则y1,y2,y3的大小关系是()A. B. C. D.6.下列图案中,是中心对称图形的是()A. B. C. D.7.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.28.若x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,则1+a+b的值是()A.2017 B.2018 C.2019 D.20209.在以下四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.10.下列说法正确的是().A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次11.如图是某零件的模型,则它的左视图为()A. B. C. D.12.下列说法错误的是()A.必然事件的概率为1 B.心想事成,万事如意是不可能事件C.平分弦(非直径)的直径垂直弦 D.的平方根是二、填空题(每题4分,共24分)13.如图,在中,,为边上一点,已知,,,则____________.14.已知某品牌汽车在进行刹车测试时发现,该品牌某款汽车刹车后行驶的距离(单位:米)与行驶时间(单位:秒)满足下面的函数关系:.那么测试实验中该汽车从开始刹车到完全停止,共行驶了_________米.15.如图,的顶点均在上,,则的半径为_________.16.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.17.如图,在某一时刻,太阳光线与地面成的角,一只皮球在太阳光的照射下的投影长为,则皮球的直径是______.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C,D分别落在边BC下方的点C′,D′处,且点C′,D′,B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为___(用含t的代数式表示).三、解答题(共78分)19.(8分)2019年10月1日,是新中国70周年的生日,在首都北京天安门广场举行了盛大的建国70周年大阅兵,接受的检阅,令国人振奋,令世界瞩目.在李克强总理庄严的指令下,56门礼炮,70响轰鸣,述说着56个民族,70载春华秋实的拼搏!图1是礼炮图片,图2是礼炮抽象示意图.已知:是水平线,,,的仰角分别是30°和10°,,,且.(1)求点的铅直高度;(2)求两点的水平距离.(结果精确到,参考数据:)20.(8分)如图,⊙中,弦与相交于点,,连接.求证:⑴;⑵.21.(8分)如图,若b是正数.直线l:y=b与y轴交于点A,直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=6,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.22.(10分)足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为本,销售单价为元.(1)请直接写出与之间的函数关系式和自变量的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润元最大?最大利润是多少元?23.(10分)解一元二次方程24.(10分)如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x-2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.25.(12分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.26.如图,在平面直角坐标系中,的顶点坐标分别为A(2,6),B(0,4),C(3,3).(正方形网格的每个小正方形的边长都是1个单位长度)(1)平移后,点A的对应点A1的坐标为(6,6),画出平移后的;(2)画出绕点C1旋转180°得到的;(3)绕点P(_______)旋转180°可以得到,请连接AP、A2P,并求AP在旋转过程中所扫过的面积.
参考答案一、选择题(每题4分,共48分)1、C【详解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故选C.2、B【分析】根据二次函数的性质解答即可.【详解】二次函数y=x2+2的对称轴为直线.故选B.【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h.3、D【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】①由开口可知:a<0,∴对称轴x=−>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵抛物线与x轴交于点A(-1,0),对称轴为x=1,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<1<,且(,y1)关于直线x=1的对称点的坐标为(,y1),∵<,∴y1<y1,故③正确,④∵−=1,∴b=-4a,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵1<c<3,∴1<-5a<3,∴-<a<-,故④正确故选D.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.4、A【解析】试题解析:A、两边都除以2y,得,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选A.5、D【分析】由于反比例函数的系数是-8,故把点A、B、C的坐标依次代入反比例函数的解析式,求出的值即可进行比较.【详解】解:∵点、、在反比例函数的图象上,∴,,,又∵,∴.故选:D.【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.6、C【解析】根据中心对称图形的概念即可得出答案.【详解】A选项中,不是中心对称图形,故该选项错误;B选项中,是轴对称图形,不是中心对称图形,故该选项错误;C选项中,是中心对称图形,故该选项正确;D选项中,不是中心对称图形,故该选项错误.故选C【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.7、A【解析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案.【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,∴C(1,2),则CD的长度是2,故选A.【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.8、D【分析】根据x=-1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,可以得到a+b的值,从而可以求得所求式子的值.【详解】解:∵x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,∴a+b﹣2019=0,∴a+b=2019,∴1+a+b=1+2019=2020,故选:D.【点睛】本题考查一元二次方程的解,解答本题的关键是明确题意,求出所求式子的值.9、B【分析】旋转180后能够与原图形完全重合即是中心对称图形,根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、C【解析】试题解析:A.“购买1张彩票就中奖”是不可能事件,错误;B.“概率为0.0001的事件”是不可能事件,错误;C.“任意画一个三角形,它的内角和等于180°”是必然事件,正确;D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.11、D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.12、B【分析】逐一对选项进行分析即可.【详解】A.必然事件的概率为1,该选项说法正确,不符合题意;B.心想事成,万事如意是随机事件,该选项说法错误,符合题意;C.平分弦(非直径)的直径垂直弦,该选项说法正确,不符合题意;D.的平方根是,该选项说法正确,不符合题意;故选:B.【点睛】本题主要考查命题的真假,掌握随机事件,垂径定理,平方根的概念是解题的关键.二、填空题(每题4分,共24分)13、【分析】由题意直接根据特殊三角函数值,进行分析计算即可得出答案.【详解】解:∵在中,,,,∴,∴,∵,∴,∴.故答案为:.【点睛】本题考查锐角三角函数,熟练掌握三角函数定义以及特殊三角函数值进行分析是解题的关键.14、1【分析】此题利用配方法求二次函数最值的方法求解即可;【详解】∵,∴汽车刹车后直到停下来前进了1m.故答案是1.【点睛】本题主要考查了二次函数最值应用,准确化简计算是解题的关键.15、1【分析】连接AO,BO,根据圆周角的性质得到,利用等边三角形的性质即可求解.【详解】连接AO,BO,∵∴又AO=BO∴△AOB是等边三角形,∴AO=BO=AB=1即的半径为1故答案为1.【点睛】此题主要考查圆的半径,解题的关键是熟知圆周角的性质.16、【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.17、15【分析】由图可得AC即为投影长,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,利用三角函数可得AB长.【详解】解:如图,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,AC即为投影长.在中,,所以皮球的直径是15cm.故答案为:15.【点睛】本题考查了三角函数的应用,由图确定圆的投影长及直径是解题的关键.18、2t【分析】根据翻折的性质,可得CE=,再根据直角三角形30度所对的直角边等于斜边的一半判断出,然后求出,根据对顶角相等可得,根据平行线的性质得到,再求出,然后判断出是等边三角形,根据等边三角形的性质表示出EF,即可解题.【详解】由翻折的性质得,CE=是等边三角形,的周长=故答案为:.【点睛】本题考查折叠问题、等边三角形的判定与性质、含30度的直角三角形、平行线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题(共78分)19、(1)点A的铅直高度是2019mm;(2)A,E两点的水平距离约为3529mm.【分析】(1)如图,作AG⊥EF,CH⊥AG,DM⊥EF,垂足分别为点G,H,M,利用求出AH的长,利用求出DM的长,从而求出AG的长,即点的铅直高度;(2)利用求出CH的长,再利用求出EM,从而求出A,E两点的水平距离.【详解】如图,作AG⊥EF,CH⊥AG,DM⊥EF,垂足分别为点G,H,M.(1)在Rt△ACH中,∠ACH=30°,AC=AB﹣BC=1700∴∴AH=850在Rt△DEM中,∴DM≈357∴AG=AH+CD+DM≈850+812+357=2019∴点A的铅直高度是2019mm.
(2)∵在Rt△ACH中,,∴CH≈1471∵在Rt△DEM中,,∴EM≈2058∴EG=EM+CH≈3529
∴A,E两点的水平距离约为3529mm.【点睛】本题考查了三角函数的应用,利用特殊三角函数的值求解线段长是解题的关键.20、(1)见解析;(2)见解析.【分析】(1)由AB=CD知,即,据此可得答案;(2)由知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【详解】证明(1)∵AB=CD,∴,即,∴;(2)∵,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.21、(1)L的对称轴x=1.5,L的对称轴与a的交点为(1.5,﹣1.5);(2)1;(1);(4)b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【分析】(1)当x=0时,y=x﹣b=﹣b,所以B(0,﹣b),而AB=6,而A(0,b),则b﹣(﹣b)=6,b=1.所以L:y=﹣x2+1x,对称轴x=1.5,当x=1.5时,y=x﹣1=﹣1.5,于是得到结论.(2)由y=﹣(x﹣)2+,得到L的顶点C(,),由于点C在l下方,于是得到结论;(1)由題意得到y1=,即y1+y2=2y1,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0≠0,取x0=b﹣,得到右交点D(b,0).于是得到结论;(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019,美点”总计4040个点,②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,“美点”共有1010个.【详解】解:(1)当x=0时,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=6,而A(0,b),∴b﹣(﹣b)=6,∴b=1.∴L:y=﹣x2+1x,∴L的对称轴x=1.5,当x=1.5时,y=x﹣1=﹣1.5,∴L的对称轴与a的交点为(1.5,﹣1.5);(2)y=﹣(x﹣)2+∴L的顶点C(,),∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(1)由题意得y1=,即y1+y2=2y1,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0≠0,取x0=b﹣,对于L,当y=0时,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=;(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x,直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点,∴总计4042个点,∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1010个偶数,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【点睛】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.22、(1)(2)当x=52时,w有最大值为2640.【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;
(2)利用利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.【详解】(1)由题意得:y=300-10(x-44)=-10x+740,
每本进价40元,且获利不高于30%,即最高价为52元,即x≤52,故:44≤x≤52,
(2)w=(x-40)(-10x+740)=-10(x-57)2+2890,
当x<57时,w随x的增大而增大,
而44≤x≤52,所以当x=52时,w有最大值,最大值为2640,
答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润2640元.【点睛】此题考查二元一次函数的应用,二次函数的应用.最大销售利润的问题常利函数的增减性来解答,解题关键在于确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=−时取得.23、(1)x1=1,x2=3,(2)【分析】(1)根据因式分解法解一元二次方程即可;(2)利用公式法求一元二次方程即可.【详解】(1)即∴或∴(2)【点睛】本题主要考查解一元二次方程,掌握一元二次方程的解法并灵活应用是解题的关键.24、(1)y=,y=2x-1;(2)C点的坐标为或.【分析】(1)将点分别代入反比例函数和一次函数解析式中,求得参数m和k的值,即可得到两个函数的解析式;(2)联立反比例函数和一次函数的解析式,求得B的坐标,再利用一次函数的解析式求得一次函数与y轴交点的坐标点M的坐标为,设C点的坐标为(0,yc),根据×3×|yc-(-1)|+×1×|yc-(-1)|=10解得yc的值,即可得到点C的坐标.【详解】(1)∵点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电商渠道加盟协议书3篇
- 二零二四年度商业租赁合同的标的与属性分析
- 二零二四年度办公室地板采购合同
- 二零二四年度版权许可使用合同(音乐作品)
- 二零二四年度涉外税收优惠政策合同
- 二零二四年度铝合金模板企业员工培训合同
- 二零二四年度影视制作合同的服务条款
- 滨涯幼儿园2024年度学生健康体检合同
- 二零二四年度技术开发合同之技术成果共享与保密
- 二零二四年度煤矿通风系统改善工程承包合同
- 2.贵州省地方标准项目申报书
- “读思达”教学法在整本书阅读教学中的实践
- 盐酸右美托咪定鼻喷雾剂-临床用药解读
- HSK 2标准教程(完整版)
- 新HSK1-6词汇大纲文档
- 医院保密工作培训课件
- 骨科教学查房护理
- 小学奥数应用题之和倍问题练习100题附答案
- 部编版小学语文三年级下册第一单元第一课《古诗三首》教案
- 2024年英语B级考试真题及答案
- 红色教育基地建设方案
评论
0/150
提交评论