2025届上海浦东第四教育署九年级数学第一学期期末检测模拟试题含解析_第1页
2025届上海浦东第四教育署九年级数学第一学期期末检测模拟试题含解析_第2页
2025届上海浦东第四教育署九年级数学第一学期期末检测模拟试题含解析_第3页
2025届上海浦东第四教育署九年级数学第一学期期末检测模拟试题含解析_第4页
2025届上海浦东第四教育署九年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海浦东第四教育署九年级数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列几何体中,主视图是三角形的是()A. B. C. D.2.已知三角形两边长为4和7,第三边的长是方程的一个根,则第三边长是()A.5 B.5或11 C.6 D.113.下列方程中,没有实数根的方程是()A.(x-1)2=2C.3x24.已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A.(1,2) B.(2,9) C.(5,3) D.(–9,–4)5.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了行或列,则列方程得()A.(8﹣)(10﹣)=8×10﹣40 B.(8﹣)(10﹣)=8×10+40C.(8+)(10+)=8×10﹣40 D.(8+)(10+)=8×10+406.下列事件中,属于必然事件的是()A.方程无实数解B.在某交通灯路口,遇到红灯C.若任取一个实数a,则D.买一注福利彩票,没有中奖7.如图,是的直径,是的弦,若,则().A. B. C. D.8.抛物线y=ax2+bx+c(a≠0)如图所示,下列结论:①b2﹣4ac>0;②a+b+c=2;③abc<0;④a﹣b+c<0,其中正确的有()A.1个 B.2个 C.3个 D.4个9.如图,AB是⊙O的直径,点C,D在直径AB一侧的圆上(异于A,B两点),点E在直径AB另一侧的圆上,若∠E=42°,∠A=60°,则∠B=()A.62° B.70° C.72° D.74°10.已知一个正多边形的一个外角为锐角,且其余弦值为,那么它是正()边形.A.六 B.八 C.十 D.十二二、填空题(每小题3分,共24分)11.若点A(1,y1)和点B(2,y2)在反比例函数y=﹣的图象上,则y1与y2的大小关系是_____.12.一个多边形的每个外角都是36°,这个多边形是______边形.13.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为_____.14.如图三角形ABC是圆O的内接正三角形,弦EF经过BC边的中点D,且EF平行AB,若AB等于6,则EF等于________.15.已知二次函数的图象经过原点,则的值为_______.16.在如图所示的电路图中,当随机闭合开关,,中的两个时,能够让灯泡发光的概率为________.17.在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_______.18.对于为零的两个实数a,b,如果规定:a☆b=ab-b-1,那么x☆(2☆x)=0中x值为____.三、解答题(共66分)19.(10分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.20.(6分)如图,抛物线y=﹣x2+4x+m﹣4(m为常数)与y轴交点为C,M(3,0)、N(0,﹣2)分别是x轴、y轴上的点.(1)求点C的坐标(用含m的代数式表示);(2)若抛物线与x轴有两个交点A、B,是否存在这样的m,使得线段AB=MN,若存在,求出m的值,若不存在,请说明理由;(3)若抛物线与线段MN有公共点,求m的取值范围.21.(6分)如图,直线y=2x-6与反比例函数的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)求△OAB的面积.22.(8分)如图,在□中,是上一点,且,与的延长线交点.(1)求证:△∽△;(2)若△的面积为1,求□的面积.23.(8分)如图所示,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长.(2)求经过O,D,C三点的抛物线的解析式.(3)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ.(4)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,直接写出M点的坐标;若不存在,请说明理由.24.(8分)如图,在正方形网格中,每个小正方形的边长均为1个单位.(1)△ABC绕着点C顺时针旋转90°,画出旋转后对应的△A1B1C1;(2)求△ABC旋转到△A1B1C时,的长.25.(10分)(1);(2)已知一个几何体的三视图如图所示,求该几何体的体积.26.(10分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,请用树状图或列表法求下列事件的概率.(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于6.

参考答案一、选择题(每小题3分,共30分)1、C【分析】主视图是从正面看所得到的图形,据此判断即可.【详解】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.【点睛】此题主要考查了几何体的三视图,解此题的关键是熟练掌握几何体的主视图.2、A【分析】求出方程的解x1=11,x2=1,分为两种情况:①当x=11时,此时不符合三角形的三边关系定理;②当x=1时,此时符合三角形的三边关系定理,即可得出答案.【详解】解:x2-16x+11=0,

(x-11)(x-1)=0,

x-11=0,x-1=0,

解得:x1=11,x2=1,

①当x=11时,

∵4+7=11,

∴此时不符合三角形的三边关系定理,

∴11不是三角形的第三边;

②当x=1时,三角形的三边是4、7、1,

∵此时符合三角形的三边关系定理,

∴第三边长是1.

故选:A.【点睛】本题考查了解一元二次方程和三角形的三边关系定理的应用,注意:求出的第三边的长,一定要看看是否符合三角形的三边关系定理,即a+b>c,b+c>a,a+c>b,题型较好,但是一道比较容易出错的题目.3、D【解析】先把方程化为一般式,再分别计算各方程的判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:A、方程化为一般形式为:x2-2x-1=0,△=(−2)2−4×1×(−1)=8>0,方程有两个不相等的实数根,所以B、方程化为一般形式为:2x2-x-3=0,△=(−1)2−4×2×(−3)=25>0,方程有两个不相等的实数根,所以C、△=(−2)2−4×3×(−1)=16>0,方程有两个不相等的实数根,所以C选项错误;D、△=22−4×1×4=−12<0,方程没有实数根,所以D选项正确.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4、A【解析】∵线段CD是由线段AB平移得到的,而点A(−1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(−4,−1)的对应点D的坐标为(1,2).故选A5、D【解析】增加了行或列,现在是行,列,所以(8+)(10+)=8×10+40.6、A【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可得出答案.【详解】解:A、方程2x2+3=0的判别式△=0﹣4×2×3=﹣24<0,因此方差2x2+3=0无实数解是必然事件,故本选项正确;B、在某交通灯路口,遇到红灯是随机事件,故本选项错误;C、若任取一个实数a,则(a+1)2>0是随机事件,故本选项错误;D、买一注福利彩票,没有中奖是随机事件,故本选项错误;故选:A.【点睛】本题主要考察随机事件,解题关键是熟练掌握随机事件的定义.7、B【分析】根据AB是⊙O的直径得出∠ADB=90°,再求出∠A的度数,由圆周角定理即可推出∠BCD的度数.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故选B.【点睛】本题考查圆周角定理及其推论,熟练掌握圆周角定理是解题的关键.8、D【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线与x轴有两不同的交点,∴△=b2﹣4ac>1.故①正确;②∵抛物线y=ax2+bx+c的图象经过点(1,2),∴代入得a+b+c=2.故②正确;③∵根据图示知,抛物线开口方向向上,∴a>1.又∵对称轴x=﹣<1,∴b>1.∵抛物线与y轴交与负半轴,∴c<1,∴abc<1.故③正确;④∵当x=﹣1时,函数对应的点在x轴下方,则a﹣b+c<1,故④正确;综上所述,正确的结论是:①②③④,共有4个.故选:D.【点睛】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9、C【分析】连接AC.根据圆周角定理求出∠CAB即可解决问题.【详解】解:连接AC.∵∠DAB=60°,∠DAC=∠E=42°,∴∠CAB=60°﹣42°=18°,∵AB是直径,∴∠ACB=90°,∴∠B=90°﹣18°=72°,故选:C.【点睛】本题主要考察圆周角定理,解题关键是连接AC.利用圆周角定理求出∠CAB.10、B【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【详解】∵一个外角为锐角,且其余弦值为,∴外角=45°,∴360÷45=1.故它是正八边形.故选:B.【点睛】本题考查根据正多边形的外角判断边数,根据余弦值得到外角度数是解题的关键.二、填空题(每小题3分,共24分)11、y1<y1【分析】由k=-1可知,反比例函数y=﹣的图象在每个象限内,y随x的增大而增大,则问题可解.【详解】解:∵反比例函数y=﹣中,k=﹣1<0,∴此函数在每个象限内,y随x的增大而增大,∵点A(1,y1),B(1,y1)在反比例函数y=﹣的图象上,1>1,∴y1<y1,故答案为y1<y1.【点睛】本题考查了反比例函数的增减性,解答关键是注意根据比例系数k的符号确定,在各个象限内函数的增减性解决问题.12、十【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10,故答案为:十.【点睛】本题考查多边形内角与外角,掌握多边形的外角和为解题关键.13、【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=S扇形AOC=则图中阴影部分面积为S扇形AOC﹣S菱形ABCO=故答案为【点睛】本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积和扇形的面积,有一定的难度.14、【分析】设AC与EF交于点G,由于EF∥AB,且D是BC中点,易得DG是△ABC的中位线,即DG=3;易知△CDG是等腰三角形,可过C作AB的垂线,交EF于M,交AB于N;然后证DE=FG,根据相交弦定理得BD•DC=DE•DF,而BD、DC的长易知,DF=3+DE,由此可得到关于DE的方程,即可求得DE的长,EF=DF+DE=3+2DE,即可求得EF的长;【详解】解:如图,过C作CN⊥AB于N,交EF于M,则CM⊥EF,根据圆和等边三角形的性质知:CN必过点O,∵EF∥AB,D是BC的中点,∴DG是△ABC的中位线,即DG=AB=3;∵∠ACB=60°,BD=DC=BC,AG=GC=AC,且BC=AC,∴△CGD是等边三角形,∵CM⊥DG,∴DM=MG;∵OM⊥EF,由垂径定理得:EM=MF,故DE=GF,∵弦BC、EF相交于点D,∴BD×DC=DE×DF,即DE×(DE+3)=3×3;解得DE=或(舍去);∴EF=3+2×=;【点睛】本题主要考查了相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理,掌握相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理是解题的关键.15、2;【分析】本题中已知了二次函数经过原点(1,1),因此二次函数与y轴交点的纵坐标为1,即m(m-2)=1,由此可求出m的值,要注意二次项系数m不能为1.【详解】根据题意得:m(m−2)=1,∴m=1或m=2,∵二次函数的二次项系数不为零,所以m=2.故填2.【点睛】本题考查二次函数图象上点的坐标特征,需理解二次函数与y轴的交点的纵坐标即为常数项的值.16、【分析】分析电路图知:要让灯泡发光,必须闭合,同时,中任意一个关闭时,满足条件,从而求算概率.【详解】分析电路图知:要让灯泡发光,必须闭合,同时,中任意一个关闭时,满足:一共有:,,、,、,三种情况,满足条件的有,、,两种,∴能够让灯泡发光的概率为:故答案为:.【点睛】本题考查概率运算,分析出所有可能的结果,寻找出满足条件的情况是解题关键.17、1【分析】极差是指一组数据中最大数据与最小数据的差.极差=最大值−最小值,根据极差的定义即可解答.【详解】解:由题意可知,极差为28−12=1,

故答案为:1.【点睛】本题考查了极差的定义,解题时牢记定义是关键.18、0或2【分析】先根据a☆b=ab-b-1得出关于x的一元二次方程,求出x的值即可.【详解】∵a☆b=ab-b-1,∴2☆x=2x-x-1=x-1,∴x☆(2☆x)=x☆(x-1)=0,即,解得:x1=0,x2=2;故答案为:0或2【点睛】本题考查了解一元二次方程以及新运算,理解题意正确列出一元二次方程是解题的关键.三、解答题(共66分)19、(1)144°,1;(2)180;(3).【解析】试题分析:(1)用“经常参加”所占的百分比乘以360°计算得到“经常参加”所对应的圆心角的度数;先求出“经常参加”的人数,然后减去其它各组人数得出喜欢足球的人数;进而补全条形图;(2)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(3)先利用树状图展示所有12种等可能的结果数,找出选中的两个项目恰好是“乒乓球”、“篮球”所占结果数,然后根据概率公式求解.试题解析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“经常参加”的人数为:40×40%=16人,喜欢足的学生人数为:16﹣6﹣4﹣3﹣2=1人;补全统计图如图所示:故答案为:144°,1;(2)全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数约为:1200×=180人;(3)设A代表“乒乓球”、B代表“篮球”、C代表“足球”、D代表“羽毛球”,画树状图如下:共有12种等可能的结果数,其中选中的两个项目恰好是“乒乓球”、“篮球”的情况占2种,所以选中“乒乓球”、“篮球”这两个项目的概率是=.点睛:本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了样本估计总体、扇形统计图和条形统计图.20、(1)(0,m﹣4);(1)存在,m=;(3)﹣≤m≤1【分析】(1)由题意得:点C的坐标为:(0,m﹣4);(1)存在,理由:令y=0,则x=1,则AB=1MN,即可求解;(3)联立抛物线与直线MN的表达式得:方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,即可求解.【详解】(1)由题意得:点C的坐标为:(0,m﹣4);(1)存在,理由:令y=0,则x=1,则AB=1MN,解得:m;(3)∵M(3,0),N(0,﹣1),∴直线MN的解析式为yx﹣1.∵抛物线与线段MN有公共点,则方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,∴()1﹣4(﹣m+1)≥0,解得:m≤1.【点睛】本题考查了二次函数综合运用,涉及到一次函数的性质、解不等式、一元二次方程等,其中(3),确定△≥0,且m﹣4≤﹣1是解答本题的难点.21、(1)k=8,B(1,0);(2)1【分析】(1)利用待定系数法即可求出k的值,把y=0代入y=2x-6即可求出点B的坐标;(2)根据三角形的面积公式计算即可.【详解】解:(1)把A(4,2)代入,得2=,解得k=8,在y=2x-6中,当y=0时,2x-6=0,解得x=1,∴点B的坐标为(1,0);(2)连接OA,∵点B(1,0),∴OB=1,∵A(4,2),∴△OAB=×1×2=1.【点睛】本题考查了待定系数法求反比例函数解析式,一次函数与x轴的交点问题,以及三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、(1)证明见解析;(2)24【分析】(1)利用平行线的性质得到∠ABF=∠E,即可证得结论;(2)根据平行线的性质证明△ABF∽△DEF,即可求出S△ABF=9,再根据AD=BC=4DF,求出S△CBE=16,即可求出答案.【详解】证明:(1)在□ABCD中,∠A=∠C,AB∥CD,∴∠ABF=∠E,∴△ABF∽△CEB;(2)在□ABCD中,AD∥BC,∴△DEF∽△CEB,又∵△ABF∽△CEB∴△ABF∽△DEF,∵AF=3DF,△DEF的面积为1,∴S△ABF=9,∵AD=BC=4DF,∴S△CBE=16,∴□ABCD的面积=9+15=24.【点睛】此题考查平行四边形的性质,相似三角形的判定及性质.23、(1)3;(2);(3)t=;(1)存在,M点的坐标为(2,16)或(-6,16)或【分析】(1)由矩形的性质以及折叠的性质可求得CE、CO的长,在Rt△COE中,由勾股定理可求得OE的长;

(2)设AD=m,在Rt△ADE中,由勾股定理列方程可求得m的值,从而得出D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;

(3)用含t的式子表示出BP、EQ的长,可证明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(1)由(2)可知C(-1,0),E(0,-3),设N(-2,n),M(m,y),分以下三种情况:①以EN为对角线,根据对角线互相平分,可得CM的中点与EN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;②当EM为对角线,根据对角线互相平分,可得CN的中点与EM的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;③当CE为对角线,根据对角线互相平分,可得CE的中点与MN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案.【详解】解:(1)∵OABC为矩形,∴BC=AO=5,CO=AB=1.又由折叠可知,,;(2)设AD=m,则DE=BD=1-m,

∵OE=3,∴AE=5-3=2,在Rt△ADE中,AD2+AE2=DE2,∴m2+22=(1-m)2,∴m=,∴D,∵该抛物线经过C(-1,0)、O(0,0),∴设该抛物线解析式为,把点D代入上式得,∴a=,∴;(3)如图所示,连接DP、DQ.由题意可得,CP=2t,EQ=t,则BP=5-2t.当DP=DQ时,在Rt△DBP和Rt△DEQ中,,∴Rt△DBP≌Rt△DEQ(HL),∴BP=EQ,∴5-2t=t,∴t=.故当t=时,DP=DQ;(1)∵抛物线的对称轴为直线x==-2,

∴设N(-2,n),

又由(2)可知C(-1,0),E(0,-3),设M(m,y),

①当EN为对角线,即四边形ECNM是平行四边形时,如图1,

则线段EN的中点横坐标为=-1,线段CM的中点横坐标为,

∵EN,CM互相平分,

∴=-1,解得m=2,

又M点在抛物线上,

∴y=×22+×2=16,

∴M(2,16);

②当EM为对角线,即四边形ECMN是平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论