亚开行-从上绘图:加强亚洲及太平洋地区的农业制图(英)_第1页
亚开行-从上绘图:加强亚洲及太平洋地区的农业制图(英)_第2页
亚开行-从上绘图:加强亚洲及太平洋地区的农业制图(英)_第3页
亚开行-从上绘图:加强亚洲及太平洋地区的农业制图(英)_第4页
亚开行-从上绘图:加强亚洲及太平洋地区的农业制图(英)_第5页
已阅读5页,还剩120页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PLOTTINGFROMABOVE

ENHANCINGAGRICULTURALMAPPINGINASIAANDTHEPACIFIC

AnthonyBurgard;AnnaChristineDurante;PamelaLapitan;

MahinthanJosephMariasingham;ArturoY.Pacificador,Jr.;andMashalRiaz

JUNE2024

ASIANDEVELOPMENTBANK

PLOTTINGFROMABOVE

ENHANCINGAGRICULTURALMAPPINGINASIAANDTHEPACIFIC

AnthonyBurgard;AnnaChristineDurante;PamelaLapitan;

MahinthanJosephMariasingham;ArturoY.Pacificador,Jr.;andMashalRiaz

JUNE2024

ASIANDEVELOPMENTBANK

CreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)

©2024AsianDevelopmentBank

6ADBAvenue,MandaluyongCity,1550MetroManila,Philippines

Tel+63286324444;Fax+63286362444

Somerightsreserved.Publishedin2024.

ISBN978-92-9270-774-3(print);978-92-9270-775-0(PDF);978-92-9270-776-7(ebook)PublicationStockNo.TCS240326-2

DOI:

/10.22617/TCS240326-2

TheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsandpoliciesoftheAsianDevelopmentBank(ADB)oritsBoardofGovernorsorthegovernmentstheyrepresent.

ADBdoesnotguaranteetheaccuracyofthedataincludedinthispublicationandacceptsnoresponsibilityforany

consequenceoftheiruse.ThementionofspecificcompaniesorproductsofmanufacturersdoesnotimplythattheyareendorsedorrecommendedbyADBinpreferencetoothersofasimilarnaturethatarenotmentioned.

Bymakinganydesignationoforreferencetoaparticularterritoryorgeographicareainthisdocument,ADBdoesnotintendtomakeanyjudgmentsastothelegalorotherstatusofanyterritoryorarea.

ThispublicationisavailableundertheCreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)

/licenses/by/3.0/igo/

.Byusingthecontentofthispublication,youagreetobeboundbythetermsofthislicense.Forattribution,translations,adaptations,andpermissions,pleasereadtheprovisionsandtermsofuseat

/terms-use#openaccess

.

ThisCClicensedoesnotapplytonon-ADBcopyrightmaterialsinthispublication.Ifthematerialisattributed

toanothersource,pleasecontactthecopyrightownerorpublisherofthatsourceforpermissiontoreproduceit.ADBcannotbeheldliableforanyclaimsthatariseasaresultofyouruseofthematerial.

Pleasecontactpubsmarketing@ifyouhavequestionsorcommentswithrespecttocontent,orifyouwishtoobtaincopyrightpermissionforyourintendedusethatdoesnotfallwithintheseterms,orforpermissiontousetheADBlogo.

CorrigendatoADBpublicationsmaybefoundat

/publications/corrigenda

.

Notes:

Inthispublication,“$”referstoUnitedStatesdollars.ADBrecognizes“RepublicofArmenia”asArmenia.

Photos:AllphotosbytheAsianDevelopmentBankunlessotherwiseindicated.

Featuredonthecover,startingfromthetopleftandmovingclockwise,areimagescapturingfieldworkconductedinArmenia,theCookIslands(includingthethirdphoto),andtheLaoPeople'sDemocraticRepublic.ThefifthphotoisfromaremotesensingtrainingsessioninVietNam.

CONTENTS

TablesandFiguresv

TablesandFiguresiv

Forewordv

Introduction1

Methodology5

AnalysisofReportedandMeasuredArea16

ImplicationsforPolicyandRecommendations25

Conclusion26

Appendixes

12022CookIslandsPostEnumerationSurveyDesign27

2

DetailsofAreaSamplingFramefor2022PostEnumerationSurveyoftheCookIslands

34

3

2022CookIslandsPostEnumerationSurveyQuestionnaire

39

4

ProtocolsforGPSParcelAreaMeasurement

45

5

ProceduresforEditingGPSDataCollectedforAreaMeasurement

49

References

51

iii

TABLESANDFIGURES

Tables

Tables

1NumberofAgriculturalHouseholdsbyLevelofAgriculturalActivityfrom2011and2021Censuses9

ofPopulationandDwellingCookIslands

2ComparisonBetweenthe2011CensusofAgricultureand2022ADBPostEnumerationSurvey10

NumberofAgriculturalHouseholdsbyLevelofAgriculturalActivityBasedonCensusof

AgricultureDefinitions

3EstimatedTotalAreainSquareMetersandAcresofAgriculturalHoldings16

4ComparisonofEstimatedTotalAreaofHoldingsbyReportedandGPS-AssistedMeasurements17

A1.1DescriptiveStatisticsofSelectedEnumerationAreaCharacteristics(Rarotonga,CookIslands2021,32

78EnumerationAreas)

A1.2CorrelationMatrixBetweenDesign-TestVariables(A1,A2)andStratificationVariables(A3,A4)32

A1.3MeanandCoefficientofVariationValuesofDesign-TestVariablesbyStrata.33

A1.4CalculatedSampleSize(NumberofEnumerationAreas)atDifferentLevelsofTargetedPrecision34

Figures

1LandUseandLandCoverClassificationsofRarotonga7

2AgriculturalIntensityonRarotongaIsland,CookIslands7

3DefinitionsforLevelofAgriculturalActivityin2011CensusofAgricultureandthe2022Post9

EnumerationSurvey,CookIslands

4EffectsofGPSErroronAreaMeasurement11

5CookIslands—ParcelAreasCapturedbyHandheldGPS,GarmineTrex32x12

7CookIslands—ParcelAreasCapturedbyDigitizationonSatelliteImageMethod13

6DigitizinganAgriculturalParcelBoundaryinSurveySolutions13

8DigitizinganAgriculturalParcelBoundarybyWalkingAroundtheParcelinSurveySolutions14

9GPSMeasurementErrorsinIrregularShapes14

10DigitizationofAgriculturalParcelonSatelliteImagebySelectionofParcelCorners15

11CookIslands—Farmer-ReportedandDigitizedAreasVersusGPSAreaMeasurement18

12QuantileRegressionCoefficientsComparingFarmer-ReportedandGPSAreaMeasurement19

13DifferencesinthePerceptionofScaleasCapturedbyWalking(Green)andDigitization(Red)Methods20

14ArmeniaFarmer-ReportedandDigitizedAreaVersusGPSAreaMeasurement21

15GPSParcelAreasCapturedinPakPokVillage,VangVieng,VientianeProvince,LaoPeople’s22

DemocraticRepublic

iv

TablesandFigures

16LaoPeople’sDemocraticRepublicFarmer-ReportedandDigitizedAreaVersusGPSAreaMeasurement23

A1SampleEnumerationAreasSelectedforthePostEnumerationSurvey35

A4.1SampleSketchofParcel48

A4.2CheckingSatelliteAccuracyontheGarmineTrex32x49

A3.3MarkingaWaypointontheGarmineTrex32x49

A4.4MarkingaWaypointontheGarmineTrex32x50

A4.5SavingtheParcelArea50

A4.6WorkflowofGPSAreaMeasurementProtocol51

v

FOREWORD

ThisreportPlottingfromAbove:EnhancingAgriculturalMappinginAsiaandthePacificprovidesacomprehensiveoverviewoftheapplicationofamethodologyforagriculturalareameasurementandinsightsgainedfromits

implementationinthesethreecountries.

TheAsianDevelopmentBank(ADB)haslaunchedatechnicalassistanceprojecttostrengthenthecapabilities

ofnationalstatisticsofficesandotherministries,equippingthemwiththenecessaryskillstomeettheSustainableDevelopmentGoals’increasingdatademands.Apioneeringaspectofthisprojectistheuseofgeospatial

technologies,whichhavebeenemployedtocreatemethodologicaltoolsforagriculturalareameasurement.

Thesetoolsaredesignedtoevaluatethediscrepanciesinagriculturalareaestimatesbetweentraditionalfarmer-reportedmethodsandmoremodernapproachesusingGlobalPositioningSystem(GPS)devicesforobjective

measurements.

Agriculturallandisacrucialassetforfarmers,servingasthefoundationoftheireconomiclivelihood.Itfacilitatesvariousactivitiessuchascropcultivation,animalhusbandry,fisheries,andforestry.Historically,obtainingaccurateandunbiasedmeasurementsofagriculturallandshasbeenachallengingaspectofagriculturalstatistics.However,byidentifyingandaddressingbiasesinthesemeasurements,policymakerscangainamorepreciseunderstanding

ofagriculturalproductivity.Theadventofgeospatialtechnologieshasmadethistaskmoreaccessibleand

economical,revolutionizingthewayagriculturalareasaremeasured.Thistechnologicalshifthasmadeobjectiveareameasurementnotonlymorefeasiblebutalsomorecost-effective.

Thisreportfeaturesanin-depthanalysisofanareaframeapproachimplementedintheCookIslands.Theapproachusesnon-overlappingandrelativelyfixedgeographicalunitsfromwhichasamplemaybedrawn,insteadofthe

moretime-consumingtraditionallistframecomprisingagriculturalholdingscompiledduringanagriculturalcensus.

Geospatialdatacanbeintegratedwithasampleofpolygonsdrawnfromanareaframe,whichcanbefurtherstratifiedbyvariouscharacteristicssuchastopography.

Additionally,thereportdelvesintotheuseofgeospatialtechnologiestoassessbiasesinagriculturallandreporting

inArmenia,theCookIslands,andtheLaoPeople'sDemocraticRepublic(PDR).Thestudyemployedarangeof

geospatialtechniquesforanunbiasedmeasurementofagriculturalland.Oneofthekeystrengthsofthisstudyisitsexplorationofthefeasibilityandapplicabilityoftheapproachacrossthreecountriesindifferentregionswithdistinctcharacteristics,agroclimaticconditions,andsocio-politicalcontexts.

TheADBprojectteamwouldliketotakethisopportunitytothanktheimplementingagenciesfromtheStatisticalCommitteeoftheRepublicofArmenia,theCookIslandsMinistryofAgriculture,andtheLaoPDRMinistryof

AgricultureandForestryfortheirinvaluablecontributionsandofferingcriticalinsightsintothediverseagriculturalpracticesacrossAsiaandthePacific.TheteamisgratefultoMr.GagikAnanyan,DeputyofthePresidentofthe

StatisticalCommitteeoftheRepublicofArmenia;Mrs.TemaramaAnguna-Kamana,SecretaryofAgriculture,CookIslandsMinistryofAgriculture;andMs.KhamvayNanthavong,DirectoroftheCenterforAgriculturalStatisticsof

vi

Foreword

theLaoPDRMinistryofAgricultureandForestryforspearheadingtheimplementationoftheprojectinthepilot

areas.SinceregratitudeisofferedtoArsenAvagyan,WilliamWigmore,TearoaIorangi,PunaKamoe,Angeylie

Ngaoire,andSengphachanKhounthikoummane,forprovidingtechnicalandlogisticalsupportintheconductofallprojectactivities.Further,theteamwouldliketoexpressappreciationtofieldandtechnicalstafffortheirdedicationtocollecting,processing,andanalyzingthedatafromwhichthisstudywouldnotbepossible.

ThereporthasbeenproducedbytheStatisticsandDataInnovationUnitwithintheEconomicResearchand

DevelopmentImpactDepartmentatADB,undertheoveralldirectionofElaineS.Tan.TheprojectandreportteamswereledbyMahinthanJosephMariasingham,withvaluableresearchandtechnicalsupportfromAnthonyBurgard,AnnaChristineDurante,PamelaLapitan,ArturoY.PacificadorJr.,andMashalRiaz.MelanieKellehercopyeditedthefinalmanuscript,EdithCreustypesetthereport,andClaudetteRodrigopreparedthecoverdesign.

Itishopedthatthisstudyaidsintheevolutionofmethodologiesformeasuringagriculturalareas.Thismethodologicaladvancementholdsthepotentialtoenhanceaccessibilityandaccuracyinagriculturaldatacollection.Itisanticipatedthatthisreportwillhaveapositiveinfluenceonthefutureofagriculturalstatistics.

AlbertFrancisPark

ChiefEconomistandDirectorGeneral

EconomicResearchandDevelopmentImpactDepartmentAsianDevelopmentBank

vii

INTRODUCTION

ATechnologicalShiftinAgriculturalStatistics

Thegrowingaccessibilityofgeospatialtechnologiesisreshapinghowagriculturalstatisticsaregathered,processed,anddisseminated.Advancedtechnologieslikeremotesensingusingsatelliteimagery,GlobalPositioningSystem

(GPS),andunmannedaerialvehicles(UAVs)offerthepotentialformoreefficientmethodstomonitorchangesinagriculturewithgreaterprecisionandfrequency.

Oncecost-prohibitiveforlarge-scalestatisticaldatacollection,geospatialtechnologiesarebecomingincreasinglycommonplace,efficient,andaccessibleinofficialstatistics.Consumer-gradeequipmentisnowmorecapable

andlessexpensive.Ascomputer-assistedinterviewingdatacollectionmethodsonceusheredinthedigitizationofstatisticaldatacollections,thesamemoderntechnologiesintabletcomputersprovideameanstosimplify

geospatialdatacollection.Itisnowmorecommonplaceforagriculturaldataproducerstoregularlycollect,forexample,thepointlocationofagriculturalhouseholdsandboundaryareasofagricultureandcroplands.

Similarly,thecostofremotesensingsatelliteimageryhasdecreased,largelyduetoinitiativesbyorganizationsliketheEuropeanSpaceAgency(ESA),theJapanAerospaceExplorationAgency,andtheNationalAeronauticsandSpaceAdministration,whichhavemadehigh-resolutionsatelliteimagerymorereadilyavailableasafreeglobal

publicgood.

GreateraccessibilityofUAVsandultra-high-resolutionimageryhaveempowered,forexample,thePacificislandcountries—whichhavetraditionallybeensusceptibletoclimatechange—toregularlymapandmonitorland

changeswithgreaterdetailandtimeliness.Theseadvancementspavethewayforthebroaderadoptionandutilizationofgeospatialtechnologies,significantlyenhancingagriculturalstatistics.

OneoftheobjectivesoftheAsianDevelopmentBank(ADB)technicalassistanceprojectistointegrategeospatialtechnologiesintotraditionalsurveydesignandbuildthecapacityofdataproducersintheregiononitspotential

usecaseapplications.Despitetheincreasingrelevanceofsuchtechnology,nationalstatisticalofficesandofficialproducersofagriculturalstatisticsoftenfacechallengesinitsutilization.Thisincludeshiringstaffskilledin

workingwiththesedatatypesandupgradinginformationtechnologyinfrastructuretomanagethelargerdatasets.Whilemanyorganizationshaveestablishedgeographicinformationsystem(GIS)unitswithintheiroffices,their

applicationisprimarilylimitedtocreatinganddistributingmaps.Therehasbeenlimitedprogressbycomparisoninintegratinggeospatialtechniquesintosurveydesignanddatacollectionprocesses.

Oneinnovation,however,usesgeospatialtechniquesforsurveydesignandimprovesuponthetraditional

samplinglistframe.Constructionofthetraditionallistframe—acomprehensivelistofagriculturalholdingsina

country—isacostlyundertakingoftencompletedonceevery5to10yearsduringagriculturecensusesand—ifwellmaintained—updatedthroughasystemofintercensalagriculturalsurveys.Thelistframeisapainpointformany

1

PlottingfromAbove

officialdataproducersasitisnotoriouslydifficultandexpensivetobuild,update,andmaintain.Whilecountries

intheregionhavetrendedtopursueafarmer-registry-basedapproachtotheconstructionoftheseframes,they

arecurrentlylimitedbylowfarmervolunteerratesandmaylackkeyauxiliarydatatoserveasaneffectivesamplinglistframe.Acomplementaryapproachhasbeenforofficialstatisticsproducerstoadoptamixed-frameapproachincorporatingtheuseofanareaframe.Anareaframeconsistsofnon-overlappingandrelativelyfixedgeographicalunitsfromwhichasamplemaybetaken.

Alimitationofareaframesisthattheyarenotalwaysoptimizedforstatisticalpurposesandareconstructedwith

broaderusecases,suchasthedemarcationofadministrativeboundaries.Thisoftenresultsininsufficientauxiliaryinformationtoenhancesurveysampleefficiency.Withthegrowingaccessibilityofgeospatialdata,opportunities

existtointegratediversegeospatialdatasources,includinglanduseorlandcovermaps,topographicalmaps,and

thelocationsofnaturalandhuman-madefeatures.Usinglocationasareferencepoint,thesedatacanbeintegratedtoenhancesamplingmethods.Thisintegrationallowsformoreefficientor“smart”samplingapproaches—suchas

stratifyingbydifferingagriculturalcharacteristics—therebyimprovingtheaccuracyandefficiencyofdatacollectionprocesses.Thisstratificationcould,forexample,bebasedonthedensityoftheestimatedagriculturalareaor

distinctagroecologicalzones,thusimprovingtheprecisionofthesurveysample.

InseveralAsiancountries,nationalstatisticalofficesandagriculturallineministriesaretransitioningtoprecisionagricultureusingdigitalrecordsandgeospatialinformationtomapagriculturalareas.Thisincludesdigitizing

agriculturalparcelstoenhanceproductionstatisticsestimationasseeninthelastagriculturecensusofthe

People’sRepublicofChina,theSmartFarmInitiativeintheRepublicofKorea,andtheagriculturaladministrativerecordsysteminSriLanka.Additionally,theseplatformsofferthepotentialforasystemofgroundtruthvalidationpointsrequiredforothertechnicalestimationsuchasremotesensing-basedcropestimation.

ThispaperwillexploreacasestudyforimplementinganareaframeapproachintheCookIslandsusingalandcovermapdevelopedwiththeassistanceofESAasanauxiliarydatasource.Thelandcovermap—createdfromhigh-

resolutionsatelliteimageryofRarotongaIslandin2021—enabledtheclassificationofareaswithahighprobabilityofagriculturalproduction.Thisclassificationwasinstrumentalindeterminingthesampleallocationforapost

enumerationsurveyconductedafterthe2021AgricultureCensus.

Thepaperwillfurtherinvestigateusinggeospatialtechnologiestoevaluatebiasesinreportingagriculturalland

inArmenia,theCookIslands,andtheLaoPeople’sDemocraticRepublic(LaoPDR).Thestudyapplieddiverse

geospatialmethodsforanobjectivemeasurementofagriculturalland,includingspecializedhandheldGPSdevicesandtablet-basedsoftwarefordigitizingtheboundariesofagriculturalparcelsonhigh-resolutionsatelliteimagery.

AgriculturalLandisaKeyFactorinEconomicProduction

Agriculturallandisakeyproductiveassetforfarmers,formingthebaseoftheireconomiclivelihood.Itisakeyfactorofproduction,enablingthegrowingofcrops,raisinganimals,fisheries,andforestryactivities.Thesizeofagricultural

landisacriticalstatisticfromapolicyperspectiveasithelpspolicymakersbetterunderstandhowfarmingis

structuredinacountry.Accuratemeasurementsofagriculturalareaareimportantforevaluatinghowproductivefarmsare,planningforagriculturalgrowth,andmakingeffectiveagriculturalpolicies.

Fromamacroeconomicperspective,agriculturallandareafeedsintothecriticalcalculationofpotentialeconomicoutput.Inmanycases,cropproductionstatisticsarederivedbasedonreportedagriculturalareamultipliedbyanaverageyieldestimateforthelocality.Anybiasesinlandareaestimatesreportedbythefarmerwillsignificantly

compoundtheestimatefortotalagriculturaloutput.

2

Introduction

Biasesinestimatingagriculturalareasmayalsonegativelyimpactresourceallocationstogovernmentsupport

programs.Foodsecurityisaprimaryconcernformanygovernments,especiallythoseinclimate-vulnerableareassuchasthePacificislandcountries.Anoverestimationorunderestimationofagriculturallandarea—andtherebyproduction—canaffecttheabilityofacountrytomeetitscaloricandnutrientneedssustainably.Andwherefoodsecurityisachallenge,improvedstatisticsontheagriculturalareahelpgovernmentsimproveplanstoimportkeyagriculturalcommoditiestomeettheserequirements.Thesedatamaythenbeusedtosupportcropandinput

subsidies,cropinsuranceschemes,andadditionaltechnicalsupportthroughagriculturalextensionservices.

Finally,agriculturesignificantlyimpactstheenvironment,contributingtogreenhousegasemissionsand

encroachmentonnaturalforests,leadingtobiodiversityloss.Improvedestimatesofagriculturallanduseareessentialforurbanandrurallanduseplanningandmanagingtheseimpactsinthelongterm.

RecallBiasesinEstimatingAgriculturalLand

Thecommonmethodforestimatingagriculturallandincensusandsurveysinvolvessubjectiverecallbyfarmers,

askingthemtoreporttheextentoftheiroperatedland.Thisapproachpresentsseveralchallenges.Itassumes

farmers’understandingofthetermoperationalagriculturalland,aconceptthatcanintroducenon-samplingbiasesifunclear.Theseissuesarecompoundedbydifferencesinagriculturalpracticesthroughouttheregion,wherein

somecountries,itmaybecommontosharecommunalareasforagriculturalproductionandliveandworkinareaswherelandtenureisnotclearlydefined.

Thismethodassumesfarmershaveaccurateknowledgeofthesizeoftheirland.Thisknowledgeistypicallybasedoninformationfromformallandtitlesordeeds,providingofficialdocumentationofprecisemeasurementsofthe

land.Withoutthesedocuments,farmers’estimatesmaybelargelyspeculative.InArmenia,forexample,astrong

landcadastralsystemexistsinwhichlandareaislinkedwithpropertytaxandgovernmentplanningsystems.Insuchcases,farmerknowledgeoftheirareaisbasedonhowupdatedthesesystemsareandtheextentofpublicaccesstothesedocuments.

Thereisalsotheissueofreportedareameasurementunits.Familiaritywithstandardunitsofareameasurementisnotalwayscommonamongfarmers.Forinstance,intheCookIslands,afarmermightdescribetheirlandintermsofarugbyfieldsizeorreferencenaturallandmarkslikealargetree.IntheLaoPDR,localunitssuchas“lai”and“ngam”arecommon,complicatingaccuratereportinginstandardizedunitslikeacresorhectares.Farmersmayusedifferentareaunitsfordifferentlandfeaturesincertaininstances.Forexample,totalareamightbereportedinacres,while

individualplotsaredescribedinsquaremeters(m2).Differencesinareaunitsreportedmayburdenthefieldstaffwhenperformingqualityassurancechecks.

Thelackoffamiliaritywithstandardizedunitsofmeasurementaddstotheresponseburdenforfarmers,leading

themtoeitherinaccuratelyconverttheunitsorgivespeculativeanswers.Toaddressthis,agriculturalsurveys

increasinglypermitrespondentstospecifytheunitsusedforeacharea-relatedquestion.However,inconsistencies

inreportedareasremainacommonissue.Theserequirecarefulvalidationandadjustmentduringthedataprocessingtoensureaccuracyandconsistency.

Finally,thephysicalcharacteristicsofthelandcanhinderaccurateareaestimation.InmanyAsianandPacific

countries—especiallysmallholdermixedcroppingsystems—agriculturalparcelsoftenhaveirregularshapes.

Theymaybesituatedinsteepmountainousterrain,affectingfarmers’perceptionoftheirsize.Thiscomplexitycanleadtoinaccuraciesinreportedlandarea,significantlyimpactingthequalityofagriculturalstatistics.

3

PlottingfromAbove

IntroducingObjectiveMeasurementstoAssessAgriculturalLand

Acknowledgingthesubjectivebiasesassociatedwithfarmerrecalldata,oneapproachtomitigatethisisbyintroducing

objectiveareameasurement.Traditionally,objectiveareameasurementinvolveslandsurveyingtodelineateagriculturalparcelsusingthetape-and-compassapproach(FAO,1982).Thismethodentailsmeasuringeachsideoftheparcel

withatapemeasureandusingacompasstodeterminetheanglesbetweensides.However,thistechniqueistime-consumingandresource-intensive.Italsodemandshighlyskilledworkerstoperformprecisemeasurementsandcalculatetheareausingcomplextrigonometricfunctions.Whendonecorrectly,however,thetapeandcompass

methodisconsideredthe“goldstandard”foragriculturalareameasurement(Carlettoetal.,2016).

In2018,ADBconductedapilotstudytoexploreusingGPSandsatellitedataastechnologicalalternativesfor

objectivelymeasuringagriculturalparcels.Thestudyfindingsindicatedthatthesemethodsalignedwellwiththe

“goldstandard”ofmeasurementand,onaverage,weremor

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论