广东省湛江市三校联考2025届数学九上期末考试模拟试题含解析_第1页
广东省湛江市三校联考2025届数学九上期末考试模拟试题含解析_第2页
广东省湛江市三校联考2025届数学九上期末考试模拟试题含解析_第3页
广东省湛江市三校联考2025届数学九上期末考试模拟试题含解析_第4页
广东省湛江市三校联考2025届数学九上期末考试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省湛江市三校联考2025届数学九上期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30° B.45° C.60° D.40°2.⊙O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是()A. B.C. D.3.已知抛物线与轴没有交点,那么该抛物线的顶点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,等腰与等腰是以点为位似中心的位似图形,位似比为,则点的坐标是()A. B. C. D.5.在比例尺为1:10000000的地图上,测得江华火车站到永州高铁站的距离是2cm,那么江华火车站到永州高铁站的实际距离为()kmA.20000000 B.200000 C.2000 D.2006.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则=()A.﹣6 B.2 C.16 D.16或27.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A. B.C. D.8.将抛物线向上平移个单位长度,再向右平移个单位长度,得到的抛物线为()A. B.C. D.9.如图,在中,,D为AC上一点,连接BD,且,则DC长为()A.2 B. C. D.510.如图,点是内一点,,,点、、、分别是、、、的中点,则四边形的周长是()A.24 B.21 C.18 D.1411.人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为()A.978×103 B.97.8×104 C.9.78×105 D.0.978×10612.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为()A. B. C. D.二、填空题(每题4分,共24分)13.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.14.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.15.圆锥的底面半径为6,母线长为10,则圆锥的侧面积为__________.16.抛物线y=(x﹣3)2﹣2的顶点坐标是_____.17.如图所示,矩形的边在的边上,顶点,分别在边,上.已知,,,设,矩形的面积为,则关于的函数关系式为______.(不必写出定义域)18.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.三、解答题(共78分)19.(8分)抛物线直线一个交点另一个交点在轴上,点是线段上异于的一个动点,过点作轴的垂线,交抛物线于点.(1)求抛物线的解析式;(2)是否存在这样的点,使线段长度最大?若存在,求出最大值及此时点的坐标,若不存在,说明理由;(3)求当为直角三角形时点P的坐标.20.(8分)某公司营销两种产品,根据市场调研,确定两条信息:信息1:销售种产品所获利润(万元)与所销售产品(吨)之间存在二次函数关系,如图所示信息2:销售种产品所获利润(万元)与销售产品(吨)之间存在正比例函数关系根据以上信息,解答下列问题:(1)求二次函数的表达式;(2)该公司准备购进两种产品共10吨,请设计一个营销方案使销售两种产品获得的利润之和最大,最大利润是多少万元?21.(8分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数的图象上.(1)求反比例函数的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.22.(10分)如图1,抛物线与轴交于,两点,过点的直线分别与轴及抛物线交于点(1)求直线和抛物线的表达式(2)动点从点出发,在轴上沿的方向以每秒1个单位长度的速度向左匀速运动,设运动时间为秒,当为何值时,为直角三角形?请直接写出所有满足条件的的值.(3)如图2,将直线沿轴向下平移4个单位后,与轴,轴分别交于,两点,在抛物线的对称轴上是否存在点,在直线上是否存在点,使的值最小?若存在,求出其最小值及点,的坐标,若不存在,请说明理由.23.(10分)如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于D.(1)求BC的长;(2)连接AD和BD,判断△ABD的形状,说明理由.(3)求CD的长.24.(10分)在平面直角坐标系中,二次函数y=ax2+2nx+c的图象过坐标原点.(1)若a=-1.①当函数自变量的取值范围是-1≤x≤2,且n≥2时,该函数的最大值是8,求n的值;②当函数自变量的取值范围是时,设函数图象在变化过程中最高点的纵坐标为m,求m与n的函数关系式,并写出n的取值范围;(2)若二次函数的图象还过点A(-2,0),横、纵坐标都是整数的点叫做整点.已知点,二次函数图象与直线AB围城的区域(不含边界)为T,若区域T内恰有两个整点,直接写出a的取值范围.25.(12分)如图,在Rt△ABC中,∠ABC=90°,直角顶点B位于x轴的负半轴,点A(0,﹣2),斜边AC交x轴于点D,BC与y轴交于点E,且tan∠OAD=,y轴平分∠BAC,反比例函数y=(x>0)的图象经过点C.(1)求点B,D坐标;(2)求y=(x>0)的函数表达式.26.小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用,表示这两个看不清的数字,那么小李的号码为(手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.(1)求的值;(2)求出小王一次拨对小李手机号的概率.

参考答案一、选择题(每题4分,共48分)1、A【解析】根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=∠AOB=30°.【详解】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=∠AOB=30°.故选A.【点睛】此题考查了切线的性质:圆的切线垂直于经过切点的半径;以及圆周角定理:等弧所对的圆周角等于所对圆心角的一半.2、B【分析】根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】解:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.【点睛】本题主要考查了对直线与圆的位置关系的性质,掌握直线与圆的位置关系的性质是解此题的关键.3、D【分析】根据题目信息可知当y=0时,,此时,可以求出a的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限.【详解】解:∵抛物线与轴没有交点,∴时无实数根;即,,解得,,又∵的顶点的横坐标为:;纵坐标为:;故抛物线的顶点在第四象限.故答案为:D.【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x轴无交点得出时无实数根,再利用根的判别式求解a的取值范围.4、A【分析】根据位似比为,可得,从而得:CE=DE=12,进而求得OC=6,即可求解.【详解】∵等腰与等腰是以点为位似中心的位似图形,位似比为,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴点的坐标是:.故选A.【点睛】本题主要考查位似图形的性质,掌握位似图形的位似比等于相似比,是解题的关键.5、D【分析】由题意根据图上的距离与实际距离的比就是比例尺,列出比例式求解即可.【详解】解:设江华火车站到永州高铁站的实际距离为xcm,根据题意得:2:x=1:10000000,解得:x=20000000,20000000cm=200km.故江华火车站到永州高铁站的实际距离为200km.故选:D.【点睛】本题主要考查比例线段,解题的关键是熟悉比例尺的含义进行分析.6、D【分析】当a=b时,可得出=2;当a≠b时,a、b为一元二次方程x2-6x+2=0的两根,利用根与系数的关系可得出a+b=6,ab=2,再将其代入=中即可求出结论.【详解】当a=b时,=1+1=2;

当a≠b时,∵a、b满足a2-6a+2=0,b2-6b+2=0,

∴a、b为一元二次方程x2-6x+2=0的两根,

∴a+b=6,ab=2,

∴==1.

故选:D.【点睛】此题考查根与系数的关系,分a=b及a≠b两种情况,求出的值是解题的关键.7、D【分析】根据旋转的定义进行分析即可解答【详解】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是D.故选D.【点睛】本题考查了图纸旋转的性质,熟练掌握是解题的关键.8、B【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将抛物线向上平移个单位长度,再向右平移个单位长度,得到的抛物线为:.故选:B.【点睛】本题考查了抛物线的平移,属于基础题型,熟练掌握抛物线的平移规律是解题的关键.9、C【分析】利用等腰三角形的性质得出∠ABC=∠C=∠BDC,可判定△ABC∽△BCD,利用相似三角形对应边成比例即可求出DC的长.【详解】∵AB=AC=6∴∠ABC=∠C∵BD=BC=4∴∠C=∠BDC∴∠ABC=∠BCD,∠ACB=∠BDC∴△ABC∽△BCD∴∴故选C.【点睛】本题考查了等腰三角形的性质,相似三角形的判定与性质,解题的关键是找到两组对应角相等判定相似三角形.10、B【分析】根据三角形的中位线平行于第三边并且等于第三边的一半,求出,然后代入数据进行计算即可得解.【详解】∵E、F、G、H分别是AB、AC、CD、BD的中点,

∴,∴四边形EFGH的周长,

又∵AD=11,BC=10,

∴四边形EFGH的周长=11+10=1.

故选:B.【点睛】本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.11、C【详解】解:978000用科学记数法表示为:9.78×105,故选C.【点睛】本题考查科学记数法—表示较大的数.12、A【详解】解:设AD与圆的切点为G,连接BG,∴BG⊥AD,∵∠A=60°,BG⊥AD,∴∠ABG=30°,在直角△ABG中,BG=AB=×2=,AG=1,∴圆B的半径为,∴S△ABG==,在菱形ABCD中,∵∠A=60°,则∠ABC=120°,∴∠EBF=120°,∴S阴影=2(S△ABG﹣S扇形ABG)+S扇形FBE==.故选A.考点:1.扇形面积的计算;2.菱形的性质;3.切线的性质;4.综合题.二、填空题(每题4分,共24分)13、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.14、-1【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.15、【分析】圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.【详解】圆锥的侧面积=×6×10=60cm1.故答案为.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.16、(3,﹣2)【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标是(h,k)直接写出即可.【详解】解:抛物线y=(x﹣3)2﹣2的顶点坐标是(3,﹣2).故答案为(3,﹣2).【点睛】此题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,对称轴是.17、【分析】易证得△ADG∽△ABC,那么它们的对应边和对应高的比相等,可据此求出AP的表达式,进而可求出PH即DE、GF的长,已知矩形的长和宽,即可根据矩形的面积公式得到y、x的函数关系式;【详解】如图,作AH为BC边上的高,AH交DG于点P,∵AC=6,AB=8,BC=10,∴三角形ABC是直角三角形,∴△ABC的高==4.8,∵矩形DEFG的边EF在△ABC的边BC上,∴DG∥BC,∴△ADG∽△ABC,∵AH⊥BC,∴AP⊥DG∴,∴,∴∴PH=,∴故答案为:【点睛】本题考查了相似三角形的判定与性质,二次函数的应用,解题的关键是利用相似三角形的性质求出矩形的边长.18、【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵theorem中的7个字母中有2个字母e,∴任取一张,那么取到字母e的概率为.三、解答题(共78分)19、(1);(2)当时,长度的最大值为,此时点的坐标为;(3)为直角三角形时点的坐标为或.【分析】(1)根据已知条件先求得,,将、坐标代入,再求得、,最后将其代入即可得解;(2)假设存在符合条件的点,并设点的横坐标,然后根据已知条件用含的式子表示出、的坐标,再利用坐标平面内距离公式求得、间的距离,将其进行配方即可进行判断并求解;(3)分、两种情况进行讨论,求得相应的符合要求的点坐标即可.【详解】解:(1)∵抛物线直线相交于、∴当时,;当时,,则∴,∴把代入得∴∴(2)假设存在符合条件的点,并设点的横坐标则、∴∵∴有最大值当时,长度的最大值为,此时点的坐标为(3)①当时∵直线垂直于直线∴可设直线的解析式为∵直线过点∴∴∴直线的解析式为∴∴或(不合题意,舍去)∴此时点的坐标为∴当时,∴此时点的坐标为;②当时∴点的纵坐标与点的纵坐标相等即∴∴解得(舍去)∴当时,∴此时点的坐标为.∴综上所述,符合条件的点存在,为直角三角形时点的坐标为或.故答案是:(1);(2)当时,长度的最大值为,此时点的坐标为;(3)为直角三角形时点的坐标为或.【点睛】本题考查了二次函数与一次函数的综合应用,涉及到了动点问题、最值问题、用待定系数法求解析式、方程组问题等,充分考查学生的综合运用能力和数形结合的思想方法.20、(1);(2)购进A产品6吨,购进B产品4吨,利润之和最大,最大为6.6万元【分析】(1)由抛物线过原点可设y与x间的函数关系式为y=ax2+bx+c,再利用待定系数法求解可得;

(2)设购进A产品m吨,购进B产品(10−m)吨,销售A、B两种产品获得的利润之和为W元,根据:A产品利润+B产品利润=总利润可得W=−0.1m2+1.5m+0.3(10−m),配方后根据二次函数的性质即可知最值情况.【详解】解:(1)设二次函数的表达式为y=ax2+bx+c,

由图象,得抛物线过点(0,0),(1,1.4),(3,3.6),

将三点的坐标代入表达式,

得,

解得

所以二次函数的表达式为y=−0.1x2+1.5x;

(2)设购进A产品m吨,购进B产品(10−m)吨,销售A、B两种产品获得的利润之和为W元,

则W=−0.1m2+1.5m+0.3(10−m),

=−0.1m2+1.2m+3,

=−0.1(m−6)2+6.6,

∵−0.1<0,

∴∴当m=6时,W取得最大值,最大值为6.6万元,

答:购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.【点睛】本题主要考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,(2)中整理得到所获利润与购进A产品的吨数的关系式是解题的关键.21、(1);(2)P(,0);(3)E(,﹣1),在.【分析】(1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(,﹣3),计算求出S△AOB=××4=.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣,﹣1),即可求解.【详解】(1)∵点A(,1)在反比例函数的图象上,∴k=×1=,∴反比例函数的表达式为;(2)∵A(,1),AB⊥x轴于点C,∴OC=,AC=1,由射影定理得=AC•BC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.设点P的坐标为(m,0),∴×|m|×1=,∴|m|=,∵P是x轴的负半轴上的点,∴m=﹣,∴点P的坐标为(,0);(3)点E在该反比例函数的图象上,理由如下:∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)=,∴点E在该反比例函数的图象上.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转.22、(1),;(2)或3或4或12;(3)存在,,,最小值【分析】(1)利用待定系数法求解即可;(2)先求点D坐标,再求点C坐标,然后分类讨论即可;(3)通过做对称点将折线转化成两点间距离,用两点之间线段最短来解答即可.【详解】解:(1)把代入,得解得,∴抛物线解析式为,∵过点B的直线,∴把代入,解得,∴直线解析式为(2)联立,解得或,所以,直线:与轴交于点,则,根据题意可知线段,则点则,,因为为直角二角形①若,则,化简得:,或②若,则,化简得③若,则,化简得综上所述,或3或4或12,满足条件(3)在抛物线上取点的对称点,过点作于点,交抛物线对称轴于点,过点作于点,此时最小抛物线的对称轴为直线,则的对称点为,直线的解析式为因为,设直线:,将代入得,则直线:,联立,解得,则,联立,解得,则,【点睛】本题是一代代数综合题,考查了一次函数、二次函数和动点问题,能够充分调动所学知识是解题的关键.23、(1);(2)△ABD是等腰直角三角形,见解析;(3)【解析】(1)由题意根据圆周角定理得到∠ACB=90°,然后利用勾股定理可计算出BC的长;(2)根据圆周角定理得到∠ADB=90°,再根据角平分线定义AD=BD,进而即可判断△ABD为等腰直角三角形;(3)由题意过点A作AE⊥CD,垂足为E,可知,分别求出CE和DE的长即可求出CD的长.【详解】解:(1)∵AB是直径∴∠ACB=∠ADB=90o在Rt△ABC中,.(2)连接AD和BD,∵CD平分∠ACB,∠ACD=∠BCD,∴即有AD=BD∵AB为⊙O的直径,∴∠ADB=90°,∴△ABD是等腰直角三角形.(3)过点A作AE⊥CD,垂足为E,在Rt△ACE中,∵CD平分∠ACB,且∠ACB=90o∴CE=AE=AC=在Rt△ABD中,AD2+BD2=AB2,得出在Rt△ADE中,∴.【点睛】本题考查圆的综合问题,熟练掌握圆周角定理即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.以及其推论半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径进行分析.24、(1)①n=1;②(2)【分析】(1)①根据已知条件可确定抛物线图象的基本特征,从而列出关于的方程,即可得解;②根据二次函数图象的性质分三种情况进行分类讨论,从而得到与的分段函数关系;(2)由得正负进行分类讨论,结合已知条件求得的取值范围.【详解】解:(1)∵抛物线过坐标原点∴c=0,a=-1∴y=-x2+2nx∴抛物线的对称轴为直线x=n,且n≥2,抛物线开口向下∴当-1≤x≤2时,y随x的增大而增大∴当x=2时,函数的最大值为8∴-4+4n=8∴n=1.②若则∴抛物线开口向下,在对称轴右侧,随的增大而减小∴当时,函数值最大,;若则∴此时,抛物线的顶点为最高点∴;若则∴抛物线开口向下,在对称轴左侧,随的增大而增大∴当时,函数值最大,∴综上所述:(2)结论:或证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论