版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省黄石市河口中学九上数学期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为().A.20海里 B.10海里 C.20海里 D.30海里2.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是A.55° B.60° C.65° D.70°3.计算,正确的结果是()A.2 B.3a C. D.4.已知一个单位向量,设、是非零向量,那么下列等式中正确的是().A.; B.; C.; D..5.如图,在中,,,于点.则与的周长之比为()A.1:2 B.1:3 C.1:4 D.1:56.如图,是的直径,是的弦,若,则().A. B. C. D.7.由不能推出的比例式是()A. B.C. D.8.下列图形的主视图与左视图不相同的是()A. B. C. D.9.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)10.如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.911.如图,要测量小河两岸相对两点、宽度,可以在小河边的垂线上取一点,则得,,则小河的宽等于()A. B. C. D.12.如图,四边形ABCD和四边形A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=3:5,则四边形ABCD和四边形A'B'C'D'的面积比为()A.3:5 B.3:8 C.9:25 D.:二、填空题(每题4分,共24分)13.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的概率约为30%,估计袋中白球有个.14.一组数据:2,5,3,1,6,则这组数据的中位数是________.15.计算:sin45°·cos30°+3tan60°=_______________.16.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为__________.17.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为_____.18.如图,在中,点在边上,连接并延长交的延长线于点,若,则__________.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.20.(8分)在△ABC中,∠C=90°.(1)已知∠A=30°,BC=2,求AC、AB的长;(2)己知tanA=,AB=6,求AC、BC的长.21.(8分)如图,在△ABC中,点D、E分别在边AB、AC上,DE、BC的延长线相交于点F,且EF·DF=BF·CF.(1)求证:AD·AB=AE·AC;(2)当AB=12,AC=9,AE=8时,求BD的长与的值.22.(10分)下面是一位同学做的一道作图题:已知线段、、(如图所示),求作线段,使.他的作法如下:1.以下为端点画射线,.2.在上依次截取,.3.在上截取.4.联结,过点作,交于点.所以:线段______就是所求的线段.(1)试将结论补完整:线段______就是所求的线段.(2)这位同学作图的依据是______;(3)如果,,,试用向量表示向量.23.(10分)在平面直角坐标系中,抛物线经过点A、B、C,已知A(-1,0),B(3,0),C(0,-3).(1)求此抛物线的函数表达式;(2)若P为线段BC上一点,过点P作轴的平行线,交抛物线于点D,当△BCD面积最大时,求点P的坐标;(3)若M(m,0)是轴上一个动点,请求出CM+MB的最小值以及此时点M的坐标.24.(10分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.25.(12分)如图,在平面直角坐标系中,直线y=﹣5x+5与x轴、y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴交于另一点B.(1)求抛物线解析式及B点坐标;(2)x2+bx+c≤﹣5x+5的解集是;(3)若点M为抛物线上一动点,连接MA、MB,当点M运动到某一位置时,△ABM面积为△ABC的面积的倍,求此时点M的坐标.26.如图,反比例函数()的图象与一次函数的图象交于,两点.(1)分别求出反比例函数与一次函数的表达式.(2)当反比例函数的值大于一次函数的值时,请根据图象直接写出的取值范围.
参考答案一、选择题(每题4分,共48分)1、C【分析】如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.【详解】如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB=60°,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC==,∴BC=20海里.故选C.考点:解直角三角形的应用-方向角问题.2、C【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.3、D【分析】根据同底数幂除法法则即可解答.【详解】根据同底数幂除法法则(同底数幂相除,底数不变,指数相减)可得,a6÷a1=a6﹣1=a1.故选D.【点睛】本题考查了整式除法的基本运算,必须熟练掌握运算法则.4、B【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:、左边得出的是的方向不是单位向量,故错误;、符合向量的长度及方向,正确;、由于单位向量只限制长度,不确定方向,故错误;、左边得出的是的方向,右边得出的是的方向,两者方向不一定相同,故错误.故选:.【点睛】本题考查了向量的性质.5、A【详解】∵∠B=∠B,∠BDC=∠BCA=90°,∴△BCD∽△BAC;①∴∠BCD=∠A=30°;Rt△BCD中,∠BCD=30°,则BC=2BD;由①得:C△BCD:C△BAC=BD:BC=1:2;故选A6、B【分析】根据AB是⊙O的直径得出∠ADB=90°,再求出∠A的度数,由圆周角定理即可推出∠BCD的度数.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故选B.【点睛】本题考查圆周角定理及其推论,熟练掌握圆周角定理是解题的关键.7、C【解析】根据比例的性质依次判断即可.【详解】设x=2a,y=3a,A.正确,不符合题意;B.,故该项正确,不符合题意;C.,故该项不正确,符合题意;D.正确,不符合题意;【点睛】此题考查比例的基本性质,熟记性质并运用解题是解此题的关键.8、D【解析】确定各个选项的主视图和左视图,即可解决问题.【详解】A选项,主视图:圆;左视图:圆;不符合题意;B选项,主视图:矩形;左视图:矩形;不符合题意;C选项,主视图:三角形;左视图:三角形;不符合题意;D选项,主视图:矩形;左视图:三角形;符合题意;故选D【点睛】本题考查几何体的三视图,难度低,熟练掌握各个几何体的三视图是解题关键.9、A【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.10、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.11、C【分析】利用∠ABC的正切函数求解即可.【详解】解:∵AC⊥CD,,,∴小河宽AC=BC·tan∠ABC=100tan50°(m).故选C.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.12、C【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=3:5,∴DA:D′A′=OA:OA′=3:5,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:1.故选:C.【点睛】本题考查位似的性质,根据位似图形的面积比等于位似比的平方可得,位似图形即特殊的相似图形,运用相似图形的性质是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据摸到白球的概率公式x10=40%【详解】解:不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,其中白色小球x个,根据古典型概率公式知:P(白色小球)=x10=10%解得:x=1.故答案为1.考点:已知概率求数量.14、3【解析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.15、【分析】先求出各个特殊角度的三角函数值,然后计算即可【详解】∵∴原式=故答案为【点睛】本题考查特殊角度的三角函数值,熟记特殊角度的三角函数值是解题的关键。16、【分析】如果设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积公式,得:;故答案为:.【点睛】本题为面积问题,考查了由实际问题抽象出一元二次方程,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.17、15°【分析】根据圆周角和圆心角的关系解答即可.【详解】解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.18、【分析】根据相似三角形的判定与性质、平行四边形的性质,进而证明,得出线段的比例,即可得出答案【详解】在中,∴AD∥BC,∠DAE=∠CFE,∠ADE=∠FCE,∴△ADE∽△FCE∵DE=2EC,∴AD=2CF,在中,∵AD=BC,等量代换得:BC=2CF∴2:1【点睛】本题考查了相似三角形的判定与性质以及平行四边形的性质,数形结合是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)弧DE的长为π;(3)当∠F的度数是36°时,BF与⊙O相切.理由见解析.【解析】(1)连接AE,求出AE⊥BC,根据等腰三角形性质求出即可;(2)根据圆周角定理求出∠DOE的度数,再根据弧长公式进行计算即可;(3)当∠F的度数是36°时,可以得到∠ABF=90°,由此即可得BF与⊙O相切.【详解】(1)连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=∠BAC=×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长=;(3)当∠F的度数是36°时,BF与⊙O相切,理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.【点睛】本题考查了圆周角定理、切线的判定、弧长公式等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.20、(1)AB=4,AC=2;(2)BC=2,AC=1.【分析】(1)根据含30°角的直角三角形的性质即可得到结论;(2)解直角三角形即可得到结论.【详解】(1)在△ABC中,∠C=90°,∠A=30°,BC=2,∴AB=2BC=4,AC=BC=2;(2)在△ABC中,∠C=90°,tanA=,AB=6,∴=,∴设BC=k,AC=4k,∴AB==3k=6,∴k=2,∴BC=k=2,AC=4k=1.【点睛】本题考查了含30°角的直角三角形,解直角三角形,正确的理解题意是解题的关键.21、(1)答案见解析;(2)BD=6,【分析】(1)根据相似三角形的判定得出△EFC∽△BFD,得出∠CEF=∠B,进而证明△CAB∽△DAE,再利用相似三角形的性质证明即可;(2)根据相似三角形的性质得出有关图形的面积之比,进而解答即可.【详解】证明:(1)∵EF•DF=BF•CF,
∵∠EFC=∠BFD,∴△EFC∽△BFD∴∠CEF=∠B,∴∠B=∠AED∵∠CAB=∠DAE,∴△CAB∽△DAE∴∴AD·AB=AE·AC.(2)由(1)知AD·AB=AE·AC∴AD=6,BD=6,EC=1∵,∴∵∴∴.点睛:本题考查相似三角形的判定和性质知识,解题的关键是灵活运用相似三角形的判定解答.22、(1)CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例)等;(3)【分析】(1)根据作图依据平行线分线段成比例定理求解可得;
(2)根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;
(3)先证△OAC∽△OBD得,即,从而知,又,与反向可得出结果.【详解】解:(1)根据作图知,线段CD就是所求的线段x,
故答案为:CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例).(3),∴△OAC∽△OBD,.,,.得.,,与反向,.【点睛】本题主要考查作图-复杂作图,解题的关键是熟练掌握平行线分线段成比例定理及向量的计算.23、(1);(2)P(,),面积最大为;(3)CM+MB最小值为,M(,0)【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,设P(a,a-3),得出PD的长,列出S△BDC的表达式,化简成顶点式,即可求解;(3)取G点坐标为(0,),过M点作MB′⊥BG,用B′M代替BM,即可得出最小值的情况,再将直线BG、直线B′C的解析式求出,求得M点坐标和∠CGB的度数,再根据∠CGB的度数利用三角函数得出最小值B′C的值.【详解】解:(1)∵抛物线经过点A、B、C,A(-1,0),B(3,0),C(0,-3),代入表达式,解得a=1,b=-2,c=-3,∴故该抛物线解析式为:.(2)令,
∴x1=-1,x2=3,
即B(3,0),
设直线BC的解析式为y=kx+b′,将B、C代入得:k=,1,b′=-3,∴直线BC的解析式为y=x-3,设P(a,a-3),则D(a,a2-2a-3),∴PD=(a-3)-(a2-2a-3)=-a2+3aS△BDC=S△PDC+S△PDB=PD×3=,∴当a=时,△BDC的面积最大,且为为,此时P(,);(3)如图,取G点坐标为(0,),连接BG,过M点作MB′⊥BG,∴B′M=BM,当C、M、B′在同一条直线上时,CM+MB最小.可求得直线BG解析式为:,∵B′C⊥BG故直线B′C解析式为为,令y=0,则x=,∴B′C与x轴交点为(,0)∵OG=,OB=3,∴∠CGB=60°,∴B′C=CGsin∠CGB==,综上所述:CM+MB最小值为,此时M(,0).【点睛】此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.24、树高为5.5米【解析】根据两角相等的两个三角形相似,可得△DEF∽△DCB,利用相似三角形的对边成比例,可得,代入数据计算即得BC的长,由AB=AC+BC,即可求出树高.【详解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:树高为5.5米.【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度办公楼窗帘节能减排承包合同4篇
- 二零二五年度农机租赁合同与市场拓展合作
- 2025年度摩托车租赁企业信用评价合同4篇
- 二零二五年度新型城镇化泥工施工合同范本4篇
- 2025年度个人货车租赁与智能物流配送平台合作合同4篇
- 二零二五年度农产品代销与农产品标准化生产合作合同
- 2025年度棉花新品种研发与应用推广合同3篇
- 2025版家政服务行业农民工劳动合同示范3篇
- 二零二五年度农业用地土地租赁与农业废弃物处理合作合同4篇
- 2025年度智慧城市建设贷款合同-@-1
- 足浴技师与店内禁止黄赌毒协议书范文
- 中国高血压防治指南(2024年修订版)要点解读
- 2024-2030年中国光电干扰一体设备行业发展现状与前景预测分析研究报告
- 湖南省岳阳市岳阳楼区2023-2024学年七年级下学期期末数学试题(解析版)
- 农村自建房安全合同协议书
- 杜仲叶药理作用及临床应用研究进展
- 4S店售后服务6S管理新规制度
- 高性能建筑钢材的研发与应用
- 无线广播行业现状分析
- 汉语言沟通发展量表(长表)-词汇及手势(8-16月龄)
- 高速公路相关知识讲座
评论
0/150
提交评论