版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市秦岭中学2025届数学九上期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列事件是随机事件的是()A.画一个三角形,其内角和是 B.射击运动员射击一次,命中靶心C.投掷一枚正六面体骰子,朝上一面的点数小于 D.在只装了红球的不透明袋子里,摸出黑球2.下列抛物线中,与抛物线y=-3x2+1的形状、开口方向完全相同,且顶点坐标为(-1,2)的是()A.y=-3(x+1)2+2B.y=-3(x-2)2+2C.y=-(3x+1)2+2D.y=-(3x-1)2+23.m是方程的一个根,且,则的值为()A. B.1 C. D.4.如图,交于点,切于点,点在上.若,则为()A. B. C. D.5.关于x的方程有一个根是2,则另一个根等于()A.-4 B. C. D.6.如图,在矩形中,,,以为直径作.将矩形绕点旋转,使所得矩形的边与相切,切点为,边与相交于点,则的长为()A.2.5 B.1.5 C.3 D.47.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.10 B.12 C.16 D.188.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC=()A.60° B.65° C.70° D.80°9.如图,⊙O的半径为5,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A. B. C. D.10.已知关于x的分式方程=1的解是非负数,则m的取值范围是()A.m1 B.m1C.m-1且m≠0 D.m-111.以下列长度的线段为边,可以作一个三角形的是()A. B. C. D.12.下列图形中,∠1与∠2是同旁内角的是()A.B.C.D.二、填空题(每题4分,共24分)13.已知方程x2+mx+3=0的一个根是1,则它的另一个根是_____,m的值是______.14.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为cm.(结果保留π)15.直角三角形的直角边和斜边分别是和,则此三角形的外接圆半径长为__________.16.点M(3,)与点N()关于原点对称,则________.17.如图,正方形的边长为,点为的中点,点,分别在边,上(点不与点,重合,点不与点,重合),连接,,若以,,为顶点的三角形与相似,且的面积为1,则的长为______.18.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题(共78分)19.(8分)如图所示,已知扇形AOB的半径为6㎝,圆心角的度数为120°,若将此扇形围成一个圆锥,则:(1)求出围成的圆锥的侧面积为多少;(2)求出该圆锥的底面半径是多少.20.(8分)某果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低,若该果园每棵果树产果(千克),增种果树(棵),它们之间的函数关系如图所示.(1)求与之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?21.(8分)某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?22.(10分)如图,已知抛物线的图象经过点、和原点,为直线上方抛物线上的一个动点.
(1)求直线及抛物线的解析式;(2)过点作轴的垂线,垂足为,并与直线交于点,当为等腰三角形时,求的坐标;(3)设关于对称轴的点为,抛物线的顶点为,探索是否存在一点,使得的面积为,如果存在,求出的坐标;如果不存在,请说明理由.23.(10分)已知关于x的一元二次方程x2+2x+m=1.(1)当m=3时,判断方程的根的情况;(2)当m=﹣3时,求方程的根.24.(10分)已知抛物线y=ax2+bx+c经过(﹣1,0),(0,﹣3),(2,3)三点.(1)求这条抛物线的表达式;(2)写出抛物线的开口方向、对称轴和顶点坐标.25.(12分)如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:.26.如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.(参考数据:≈1.414,≈1.1.结果精确到0.1米)
参考答案一、选择题(每题4分,共48分)1、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、画一个三角形,其内角和是360°是不可能事件,故本选项错误;
B、射击运动员射击一次,命中靶心是随机事件,故本选项正确;
C、投掷一枚正六面体骰子,朝上一面的点数小于7是必然事件,故本选项错误;
D、在只装了红球的不透明袋子里,摸出黑球是不可能事件,故本选项错误.
故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、A【解析】由条件可设出抛物线的顶点式,再由已知可确定出其二次项系数,则可求得抛物线解析式.【详解】∵抛物线顶点坐标为(﹣1,1),∴可设抛物线解析式为y=a(x+1)1+1.∵与抛物线y=﹣3x1+1的形状、开口方向完全相同,∴a=﹣3,∴所求抛物线解析式为y=﹣3(x+1)1+1.故选A.【点睛】本题考查了二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)1+k中,顶点坐标为(h,k),对称轴为x=h.3、A【解析】将m代入关于x的一元二次方程x2+nx+m=0,通过解该方程即可求得m+n的值.【详解】解:∵m是关于x的一元二次方程x2+nx+m=0的根,
∴m2+nm+m=0,
∴m(m+n+1)=0;
又∵m≠0,
∴m+n+1=0,
解得m+n=-1;
故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的解一定满足该一元二次方程的关系式.4、B【分析】根据切线的性质得到∠ODA=90,根据直角三角形的性质求出∠DOA,根据圆周角定理计算即可.【详解】∵AD切⊙O于点D,
∴OD⊥AD,
∴∠ODA=90,
∵∠A=40,
∴∠DOA=90-40=50,
由圆周角定理得,∠BCD=∠DOA=25°,
故选:B.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.5、B【分析】利用根与系数的关系,,由一个根为2,以及a,c的值求出另一根即可.【详解】解:∵关于x的方程有一个根是2,∴,即∴,故选:B.【点睛】此题主要考查了根与系数的关系,熟练地运用根与系数的关系可以大大降低计算量.6、D【分析】连接OE,延长EO交CD于点G,作于点H,通过旋转的性质和添加的辅助线得到四边形和都是矩形,利用勾股定理求出的长度,最后利用垂径定理即可得出答案.【详解】连接OE,延长EO交CD于点G,作于点H则∵矩形ABCD绕点C旋转所得矩形为∴四边形和都是矩形,∵四边形都是矩形即故选:D.【点睛】本题主要考查矩形的性质,勾股定理及垂径定理,掌握矩形的性质,勾股定理及垂径定理是解题的关键.7、C【解析】先证明四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长【详解】如图,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,AE⊥BF,OA=OE,OB=OF=BF=6,∴OA==8,∴AE=2OA=16;故选C.【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.8、D【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.9、C【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【详解】过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=30°,∵⊙O的半径为5,∴BD=OB•cos∠OBC=,∴BC=5,故选C.【点睛】本题考查了垂径定理、圆周角定理、解直角三角形等,添加辅助线构造直角三角形进行解题是关键.10、C【解析】分式方程去分母得:m=x-1,解得x=m+1,由方程的解为非负数,得到m+1≥0,且m+1≠1,解得:m-1且m≠0,故选C.11、B【分析】根据三角形的三边关系定理逐项判断即可.【详解】A、,不满足三角形的三边关系定理,此项不符题意B、,满足三角形的三边关系定理,此项符合题意C、,不满足三角形的三边关系定理,此项不符题意D、,不满足三角形的三边关系定理,此项不符题意故选:B.【点睛】本题考查了三角形的三边关系定理:任意两边之和大于第三边,熟记定理是解题关键.12、C【解析】分析:根据同旁内角的定义进行分析判断即可.详解:A选项中,∠1与∠2是同位角,故此选项不符合题意;B选项中,∠1与∠2是内错角,故此选项不符合题意;C选项中,∠1与∠2是同旁内角,故此选项符合题意;D选项中,∠1与∠2不是同旁内角,故此选项不符合题意.故选C.点睛:熟知“同旁内角的定义:在两直线被第三直线所截形成的8个角中,夹在被截两直线之间,且位于截线的同侧的两个角叫做同旁内角”是解答本题的关键.二、填空题(每题4分,共24分)13、3-4【解析】试题分析:根据韦达定理可得:·==3,则方程的另一根为3;根据韦达定理可得:+=-=4=-m,则m=-4.考点:方程的解14、8π【解析】试题分析:先求得正多边形的每一个内角,然后由弧长计算公式.解:方法一:先求出正六边形的每一个内角==120°,所得到的三条弧的长度之和=3×=8π(cm);方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为8πcm.故答案为8π.考点:弧长的计算;正多边形和圆.15、1【分析】根据直角三角形外接圆的半径等于斜边的一半解答即可.【详解】解:根据直角三角形的外接圆的半径是斜边的一半,∵其斜边为16∴其外接圆的半径是1;故答案为:1.【点睛】此题要熟记直角三角形外接圆的半径公式:外接圆的半径等于斜边的一半.16、-6【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,列方程求解即可.【详解】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴b+3=0,a-1+4=0,即:a=﹣3且b=﹣3,∴a+b=﹣6【点睛】本题考查关于原点对称的点的坐标,掌握坐标变化规律是本题的解题关键.17、1或1【分析】根据正方形的性质以及相似三角形的性质求解即可.【详解】解:∵四边形ABCD是正方形∴,∵E是AB的中点,∴∴,当时有,,∴,∵CM>0,∴CM=1;当时有,,∴,∵CM>0,∴CM=1.故答案为:1或1.【点睛】本题考查的知识点是相似三角形的性质,利用相似三角形的面积比等于对应线段比的平方求解是此题的关键.18、或或1【详解】如图所示:①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;③当PA=PE时,底边AE=1;综上所述:等腰三角形AEP的对边长为或或1;故答案为或或1.三、解答题(共78分)19、(1)11π;(1)1.【分析】(1)因为扇形的面积就是圆锥的侧面积,所以只要求出扇形面积即可;(1)因为扇形围成一个圆锥的侧面,圆锥的底面圆的周长是扇形的弧长,借助扇形弧长公式可以求出圆锥的底面半径.【详解】解:(1);(1)扇形的弧长=,圆锥的底面圆的周长=1πR=4π,解得:R=1;故圆锥的底面半径为1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.20、(1);(2)增种果树10棵时,果园可以收获果实6750千克.【分析】(1)设,将点(12,74)、(28,66)代入即可求出k与b的值,得到函数关系式;(2)根据题意列方程,求出x的值并检验即可得到答案.【详解】(1)设,将点(12,74)、(28,66)代入,得,解得,∴y与x的函数关系式为;(2)由题意得:,解得:,,∵投入成本最低,∴x=10,答:增种果树10棵时,果园可以收获果实6750千克.【点睛】此题考查待定系数法求一次函数解析式,一元二次方程的实际应用,正确理解题意中的x、y的实际意义是解题的关键.21、销售单价为35元时,才能在半月内获得最大利润.【解析】本题考查了二次函数的应用.设销售单价为x元,销售利润为y元.求得方程,根据最值公式求得.解:设销售单价为x元,销售利润为y元.根据题意,得y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000当x==35时,才能在半月内获得最大利润22、(1)直线的解析式为,二次函数的解析式是;(2);(3)存在,或【分析】(1)先将点A代入求出OA表达式,再设出二次函数的交点式,将点A代入,求出二次函数表达式;(2)根据题意得出当为等腰三角形时,只有OC=PC,设点D的横坐标为x,表示出点P坐标,从而得出PC的长,再根据OC和OD的关系,列出方程解得;(3)设点P的坐标为,根据条件的触点Q坐标为,再表示出的高,从而表示出的面积,令其等于,解得即可求出点P坐标.【详解】解:(1)设直线的解析式为,把点坐标代入得:,直线的解析式为;再设,把点坐标代入得:,函数的解析式为,∴直线的解析式为,二次函数的解析式是.(2)设的横坐标为,则的坐标为,∵为直线上方抛物线上的一个动点,∴.此时仅有,,∴,解得,∴;(3)函数的解析式为,∴对称轴为,顶点,设,则,到直线的距离为,要使的面积为,则,即,解得:或,∴或.【点睛】本题考查了待定系数法求解析式,二次函数图象及性质的运用,点坐标的关系,综合性较强,解题的关键是利用条件表示出点坐标,得出方程解之.23、(1)原方程无实数根.(2)x1=1,x2=﹣3.【分析】(1)判断一元二次方程根的情况,只要看根的判别式△=b2-4ac的值的符号即可判断:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.(2)把m的值代入方程,用因式分解法求解即可.【详解】解:(1)∵当m=3时,△=b2﹣4ac=22﹣4×3=﹣8<1,∴原方程无实数根.(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制造业务员工作总结
- 酒店管理岗位考核
- 美容行业前台接待工作总结
- 教师团队专业培训
- 厨具行业采购工作总结
- 2024年设备监理师考试题库带答案
- 2024年热的传递教案设计
- 创意市集活动赞助合同(2篇)
- DB33T 2111-2018 福利彩票视频型彩票销售管理规范
- 安徽省阜阳市阜南县2025届中考三模生物试题含解析
- 营销专业安全培训
- 2024年度五星级酒店厨师团队管理与服务合同3篇
- 2024年医疗健康知识科普视频制作合同3篇
- 广东省广州市花都区2024年七年级上学期期末数学试题【附答案】
- 期末测试模拟练习 (含答案) 江苏省苏州市2024-2025学年统编版语文七年级上册
- 上海市徐汇区2024-2025学年高一语文下学期期末试题含解析
- 安全风险隐患举报奖励制度
- 江苏省苏州市2023-2024学年高三上学期期末考试 数学 含答案
- 线性代数知到智慧树章节测试课后答案2024年秋贵州理工学院
- 建筑幕墙工程检测知识考试题库500题(含答案)
- 安防主管岗位招聘面试题及回答建议(某大型集团公司)2025年
评论
0/150
提交评论