浙江省绍兴市迪荡新区2023-2024学年中考考前最后一卷数学试卷含解析_第1页
浙江省绍兴市迪荡新区2023-2024学年中考考前最后一卷数学试卷含解析_第2页
浙江省绍兴市迪荡新区2023-2024学年中考考前最后一卷数学试卷含解析_第3页
浙江省绍兴市迪荡新区2023-2024学年中考考前最后一卷数学试卷含解析_第4页
浙江省绍兴市迪荡新区2023-2024学年中考考前最后一卷数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴市迪荡新区2023-2024学年中考考前最后一卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c2.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8910户数262则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4 B.极差是2 C.平均数是9 D.众数是93.﹣的相反数是()A.8 B.﹣8 C. D.﹣4.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为()A.91,88 B.85,88 C.85,85 D.85,84.55.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为()A. B.π C. D.36.函数的自变量x的取值范围是()A. B. C. D.7.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=kx(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y28.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为()A.20% B.11% C.10% D.9.5%9.一元二次方程的根是()A. B.C. D.10.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是()A.2011﹣2014年最高温度呈上升趋势B.2014年出现了这6年的最高温度C.2011﹣2015年的温差成下降趋势D.2016年的温差最大二、填空题(共7小题,每小题3分,满分21分)11.请写出一个开口向下,并且与y轴交于点(0,1)的抛物线的表达式_________12.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).13.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.14.如图,菱形的边,,是上一点,,是边上一动点,将梯形沿直线折叠,的对应点为,当的长度最小时,的长为__________.15.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.16.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.17.如图,PC是⊙O的直径,PA切⊙O于点P,AO交⊙O于点B;连接BC,若,则______.三、解答题(共7小题,满分69分)18.(10分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.(1)试探究线段AE与CG的关系,并说明理由.(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.②当△CDE为等腰三角形时,求CG的长.19.(5分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,(1)求出的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).20.(8分)阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.试说明的最小值为1.21.(10分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.22.(10分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点(1)MN的长等于_______,(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)23.(12分)计算:|﹣2|+8+(2017﹣π)0﹣4cos45°24.(14分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.求证:是⊙的切线;若,且,求⊙的半径与线段的长.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.2、A【解析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.3、C【解析】互为相反数的两个数是指只有符号不同的两个数,所以的相反数是,故选C.4、D【解析】试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.考点:众数,中位数点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题5、B【解析】∵四边形AECD是平行四边形,

∴AE=CD,

∵AB=BE=CD=3,

∴AB=BE=AE,

∴△ABE是等边三角形,

∴∠B=60°,∴的弧长=.故选B.6、D【解析】

根据二次根式的意义,被开方数是非负数.【详解】根据题意得,解得.故选D.【点睛】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.7、D【解析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;故选D.考点:反比例函数的性质.8、C【解析】

设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为.根据题意,得=1.解得,(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.9、D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.考点:一元二次方程的解法——因式分解法——提公因式法.10、C【解析】

利用折线统计图结合相应数据,分别分析得出符合题意的答案.【详解】A选项:年最高温度呈上升趋势,正确;

B选项:2014年出现了这6年的最高温度,正确;

C选项:年的温差成下降趋势,错误;

D选项:2016年的温差最大,正确;

故选C.【点睛】考查了折线统计图,利用折线统计图获取正确信息是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、(答案不唯一)【解析】

根据二次函数的性质,抛物线开口向下a<0,与y轴交点的纵坐标即为常数项,然后写出即可.【详解】∵抛物线开口向下,并且与y轴交于点(0,1)∴二次函数的一般表达式中,a<0,c=1,∴二次函数表达式可以为:(答案不唯一).【点睛】本题考查二次函数的性质,掌握开口方向、与y轴的交点与二次函数二次项系数、常数项的关系是解题的关键.12、A【解析】试题分析:由题意得:SA>SB>SC,故落在A区域的可能性大考点:几何概率13、1【解析】

根据弧长公式l=nπr180,可得r=【详解】解:∵l=nπr∴r=180lnπ=故答案为:1.【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:l=nπr180(弧长为l,圆心角度数为n,圆的半径为14、【解析】如图所示,过点作,交于点.在菱形中,∵,且,所以为等边三角形,.根据“等腰三角形三线合一”可得,因为,所以.在中,根据勾股定理可得,.因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为.所以,所以,所以.点睛:A′为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A′点在以P为圆心、AP为半径的圆上,当C、A′、P在同一条直线时CA′取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.15、90°.【解析】

根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.【详解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案为:90°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.16、4.02×1.【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:40.2万=4.02×1,故答案为:4.02×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17、26°【解析】

根据圆周角定理得到∠AOP=2∠C=64°,根据切线的性质定理得到∠APO=90°,根据直角三角形两锐角互余计算即可.【详解】由圆周角定理得:∠AOP=2∠C=64°.∵PC是⊙O的直径,PA切⊙O于点P,∴∠APO=90°,∴∠A=90°﹣∠AOP=90°﹣64°=26°.故答案为:26°.【点睛】本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.三、解答题(共7小题,满分69分)18、(1)AE=CG,AE⊥CG,理由见解析;(2)①位置关系保持不变,数量关系变为;理由见解析;②当△CDE为等腰三角形时,CG的长为或或.【解析】试题分析:证明≌即可得出结论.①位置关系保持不变,数量关系变为证明根据相似的性质即可得出.分成三种情况讨论即可.试题解析:(1)理由是:如图1,∵四边形EFGD是正方形,∴∵四边形ABCD是正方形,∴∴∴≌∴∵∴∴即(2)①位置关系保持不变,数量关系变为理由是:如图2,连接EG、DF交于点O,连接OC,∵四边形EFGD是矩形,∴Rt中,OG=OF,Rt中,∴∴D、E、F、C、G在以点O为圆心的圆上,∵∴DF为的直径,∵∴EG也是的直径,∴∠ECG=90°,即∴∵∴∵∴∴②由①知:∴设分三种情况:(i)当时,如图3,过E作于H,则EH∥AD,∴∴由勾股定理得:∴(ii)当时,如图1,过D作于H,∵∴∴∴∴∴(iii)当时,如图5,∴∴综上所述,当为等腰三角形时,CG的长为或或.点睛:两组角对应,两三角形相似.19、(2)2;(2)y=x+2;(3).【解析】

(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.【详解】解:(2)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)设直线AB的解析式为y=mx+n,则有,解得,∴直线AB的解析式为y=x+2.(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′=.【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.20、(1)=x2+7+(2)见解析【解析】

(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用不等式的性质求出最小值即可.【详解】(1)设﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,则原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;当x=0时,取得最小值0,∴当x=0时,x2+7+最小值为1,即原式的最小值为1.21、(1)不可能;(2).【解析】

(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论