浙江杭州拱墅锦绣育才达标名校2023-2024学年中考联考数学试卷含解析_第1页
浙江杭州拱墅锦绣育才达标名校2023-2024学年中考联考数学试卷含解析_第2页
浙江杭州拱墅锦绣育才达标名校2023-2024学年中考联考数学试卷含解析_第3页
浙江杭州拱墅锦绣育才达标名校2023-2024学年中考联考数学试卷含解析_第4页
浙江杭州拱墅锦绣育才达标名校2023-2024学年中考联考数学试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江杭州拱墅锦绣育才达标名校2023-2024学年中考联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A. B. C.6 D.42.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()A.4+23 B.433.下列运算正确的是()A. B.C. D.4.在,,0,1这四个数中,最小的数是A. B. C.0 D.15.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为()A. B. C. D.6.如图,在平面直角坐标系xOy中,△由△绕点P旋转得到,则点P的坐标为()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)7.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是()A.160元B.180元C.200元D.220元8.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.9.下列二次根式中,最简二次根式的是()A. B. C. D.10.下列关于x的方程中,属于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=0二、填空题(共7小题,每小题3分,满分21分)11.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,,则=_____.12.据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为__________.13.如果2,那么=_____(用向量,表示向量).14.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为______.15.已知平面直角坐标系中的点A(2,﹣4)与点B关于原点中心对称,则点B的坐标为_____16.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.17.按照一定规律排列依次为,…..按此规律,这列数中的第100个数是_____.三、解答题(共7小题,满分69分)18.(10分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.求证:AF=CE.19.(5分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:.例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:.根据以上定义,解决下列问题:已知点P(3,-2).①若点A(-2,-1),则d(P,A)=;②若点B(b,2),且d(P,B)=5,则b=;③已知点C(m,n)是直线上的一个动点,且d(P,C)<3,求m的取值范围.⊙F的半径为1,圆心F的坐标为(0,t),若⊙F上存在点E,使d(E,O)=2,直接写出t的取值范围.20.(8分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|21.(10分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.22.(10分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.a=,b=,点B的坐标为;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.23.(12分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_▲人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?24.(14分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【详解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故选C.2、D【解析】

如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=2+82+(2【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值为47,故选D.【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.3、D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A.,故A选项错误,不符合题意;B.,故B选项错误,不符合题意;C.,故C选项错误,不符合题意;D.,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.4、A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.【详解】由正数大于零,零大于负数,得,最小的数是,故选A.【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.5、B【解析】

阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【详解】由旋转可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴阴影部分的面积=2×2÷2−=2−.故答案选:B.【点睛】本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.6、B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.7、C【解析】

利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.【详解】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=1.所以该商品的原价为1元;故选:C.【点睛】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.8、C【解析】试题解析:A.是轴对称图形,不是中心对称图形,故本选项错误;B.是轴对称图形,不是中心对称图形,故本选项错误;C.既是中心对称图又是轴对称图形,故本选项正确;D.是轴对称图形,不是中心对称图形,故本选项错误.故选C.9、C【解析】

判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D.=,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C.考点:最简二次根式.10、B【解析】

根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【详解】A.未知数的最高次数不是2

,不是一元二次方程,故此选项错误;

B.

是一元二次方程,故此选项正确;

C.

未知数的最高次数是3,不是一元二次方程,故此选项错误;

D.

a=0时,不是一元二次方程,故此选项错误;

故选B.【点睛】本题考查一元二次方程的定义,解题的关键是明白:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题分析:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,∴==,则===.故答案为.点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.12、1.73×1.【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将17.3万用科学记数法表示为1.73×1.故答案为1.73×1.【点睛】本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.13、【解析】∵2(+)=+,∴2+2=+,∴=-2,故答案为.点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.14、1.5或3【解析】根据矩形的性质,利用勾股定理求得AC==5,由题意,可分△EFC是直角三角形的两种情况:如图1,当∠EFC=90°时,由∠AFE=∠B=90°,∠EFC=90°,可知点F在对角线AC上,且AE是∠BAC的平分线,所以可得BE=EF,然后再根据相似三角形的判定与性质,可知△ABC∽△EFC,即,代入数据可得,解得BE=1.5;如图2,当∠FEC=90°,可知四边形ABEF是正方形,从而求出BE=AB=3.故答案为1.5或3.点睛:此题主要考查了翻折变换的性质,勾股定理,矩形的性质,正方形的判定与性质,利用勾股定理列方程求解是常用的方法,本题难点在于分类讨论,做出图形更形象直观.15、(﹣2,4)【解析】

根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【详解】解:∵点A(2,-4)与点B关于原点中心对称,

∴点B的坐标为:(-2,4).

故答案为:(-2,4).【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.16、【解析】试题分析:上方的正六边形涂红色的概率是,故答案为.考点:概率公式.17、【解析】

根据按一定规律排列的一列数依次为…,可得第n个数为,据此可得第100个数.【详解】由题意,数列可改写成,…,则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,∴第n个数为=,∴这列数中的第100个数为=;故答案为:.【点睛】本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.三、解答题(共7小题,满分69分)18、参见解析.【解析】分析:先证∠ACB=∠CAD,再证出△BEC≌△DFA,从而得出CE=AF.详解:证明:平行四边形中,,,.又,,,点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.19、(1)①6,②2或4,③1<m<4;(2)或.【解析】

(1)①根据“折线距离”的定义直接列式计算;②根据“折线距离”的定义列出方程,求解即可;③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知,根据图像易得t的取值范围.【详解】解:(1)①②∴∴b=2或4③,即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m<4(2)设E(x,y),则,如图,若点E在⊙F上,则.【点睛】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.20、-4【解析】分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.详解:原式=-4+1-2×+-1=-4点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.21、(1)见解析;(2)见解析;(3)见解析,.【解析】

(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE=.【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.22、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.【解析】试题分析:(1)根据可以求得的值,根据长方形的性质,可以求得点的坐标;

(2)根据题意点从原点出发,以每秒2个单位长度的速度沿着的线路移动,可以得到当点移动4秒时,点的位置和点的坐标;

(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点移动的时间即可.试题解析:(1)∵a、b满足∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论