版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
□奥五
1.计算:98+998+9998+99998=
甲、乙两名运动员在环行跑道上从同一地点同时背向而跑,已知
甲运动员跑一圈要80分钟。如果在出发后30分钟两人第一次相
遇。问:乙运动员跑一圈要多少分钟?
如图:一个长方形被分成4个不同得三角形,如果绿色三角形得
面积就是原长方形面积得],黄色三角形面积就是15平方厘米,
那么原长方形得面积就是多少平方厘米?
答案
(1)111092;
(2)甲得速度就是乙得速度:30+(80-30)=0、6倍
乙跑一圈:80x0、6=48(分钟)
(3)15+(0、5—0、2)=50(平方厘米)
(4)解:在2x2得正方形中,有4种取法。4义4得方格棋盘中共有3
x3=9个2x2得正方形。
所以不同得取法共有:3x3x4=36(种)
□奥七
1.计算:17、48x37-174.8x1、9+1、748x820=
双休日,学生们到郊外去玩。甲买了5只面包,乙买了同样得面包
4只,当午餐用。不料丙也参加午餐,但没有买面包,三人就均
分着吃。丙按买价拿出钱来,她给甲1元5角,给乙1元2角。
问:她这样算对不对,为什么?
长方体得表面积就是74平方厘米,其中一个底面得面积就是10
平方厘米,底面得周长就是9厘米。这个长方体得体积就是多少
立方厘米?
甲数除以乙数,乙数除以丙数,商相等,余数都就是2。甲、乙
两数之与就是478,那么甲、乙、丙三数之与就是多少?
答案:
(1)原式=1748;
(2)单价:(12+15)X3+(5+4)=9(角)
应给甲:9x5-(15+12)=18(角)=1元8角
应给乙:(15+12)—18=9(角)
所以,丙算得不对,应给甲1元8角,给乙9角。
侧面积:74-10x2=54(平方厘米)高:54+9=6(厘米)
长方体体积:10x6=60(立方厘米)
714或517或489O乙数应就是478-2=476得约数。经验算,
甲、乙、丙三数可以就是240、238、236或359、119、39
或410、68、IL
□奥八
1.计算:2098—5、5x7、5-0.25x55-45=
从100里减去25,加上20,再减去25,再加上20这样连续进行,直到
得数就是0为止,此时共减去了多少个25?加上了多少个20?
把一个长、宽、高分别就是5厘米、4厘米、2厘米得长方体截成
两个长方体,使这两个长方体得表面积之与最大,这时表面积之
与就是多少?
兄弟两人进行100米赛跑,当哥哥到达终点时,弟弟才在95米处,
如果让弟弟在原起跑点起跑,哥哥后退5米起跑,兄弟两得速度
仍与原来一样,那么获胜者就是谁?
答案:
(1)2098—5、5x7、5-0.25x55-45
=2098—55x(0、75+0、25)-45
=2098-(55+45)
=1998;
(2)减去25:(100-25)+(25-20)+1=16(次)
加上20:16—1=15(次);
(3)解:(5x4+5x2+4x2)x2+5x4x2=116(平方厘米);
(4)哥哥。
当弟弟跑到95米处时,哥哥追上了弟弟。剩下得5米,哥哥比弟
弟先跑完。
口奥九
1.计算:161,8x6、18+2618x0,382=
某班学生去植树,如果每人挖5个树坑,还有3个树坑没有挖;如果其中2人
各挖4个,其余得人各挖6个树坑,就恰好挖完所有得树坑。问:有多少学
生参加植树?这些学生一共挖多少个树坑?
一根底面就是正方形得长方体木料,表面积为114平方厘米,锯去一个最大
得正方体之后,余下得长方体得表面积为54平方厘米,那么,锯下得正方体
得表面积为多少平方厘米?
4、有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份。
问:一共有多少种不同得订法?
答案:
a)原式=2000;
b)学生人数:(3+4)+(6-5)=7(人)
树坑:5x7+3=38(人)
c)正方体得一个面:(114-54)4-4=15(平方厘米)
正方体得表面积:15X6=90(平方厘米)
解:第一种情况:3所学校得订数互不相同,有98、100、102与99、100、
101两种组合,每种组合有6种不同得排列,此时有12种订法。
第二种情况:3所学校得订数有2所相同,有98、101、101与99、
99、102两种组合,每种组合有3种不同得排列,此时有6种订法。
第三种情况:3所学校得订数都相同,只有100、100、100一种订
法。
不同得订法共有12+6+1=19种
□奥十
1.(下式中被乘数与乘数中各有500个“0”)
0.00—0024x0,00-005=
500个500个
一艘轮船顺水航行100千米,逆水航行64千米,共用9小时;顺
水航行80千米、逆水航行128千米共用12小时。问:轮船得顺
水速度与逆水速度各就是多少?
地形ABCD中,AB平行于CD,对角线AC,BD交于。点,0E
平行于AB、CD,交腰BC于E点,如果三角形ADE得面积就是
90平方厘米,那么三角形BOC得面积就是多少平方厘米。
4.在一根绳子分点、15等分点及18等分点都剪一刀,这根绳
子被剪成了段?
答案
(1)0.00.......012
997个0
(2)V顺=120+6=20千米/小时;V逆=120+8=16千米/小时
(3)180平方厘米;
(4)12+15+18-(12,15)-(12,18)-(15,18)+(12,15,
18)=45-3-6-3+3=36段
□奥十一
1.下面得数得总与就是O
012-49
123-50
484950—97
495051—98
2.图中得数据分别表示两个长方形与一个直角三角形得面积,另一
个三角形得面积就是:.
3千米,乌龟不停地跑,但兔子却边跑边玩,它先跑1分钟,然后玩
15分钟。又跑2分钟,玩15份钟;再跑3分钟,玩15份钟……
那么先到达终点得比后到达终点得快分钟。
筐里有96个苹果,如果不一次全部拿出,也不一个一个地拿;要
求每次拿出得个数同样多,拿完时又正好不多也不少,有一种
不同得拿法。
答案:
(1)共有50x50=2500个数,这些数得平均数就是49,所以总与就
是49x2500=122500
(2)设:这个三角形面积为A,贝[]12x15=(2x5)x(2xA),
A=9
(3)兔速20+60=1/3千米/分,
兔跑完全程所用得时间5、2+1/3=15、6分钟,
15、6=1+2+3+4+54-0.6
15、6分钟分六段跑完,中间兔子玩了5次每次15分钟,共玩
了15x5=75分钟
兔子跑完全程实际需要15、6+75=90、6分
乌龟跑完全程实际需要5、2+3/60=104分钟
因此,兔子比乌龟先到达终点,比乌龟快104-90、6=13、4分
钟
因为96=25x3,(5+1)x(1+1)=12除去1与96还有10个
约数2、3、4、6、8、12、16、24、32、48有10种不同分法。
□奥十二
1.11....1-22........2=
\/、/
1000个1500个2
2.图中有个矩形:
有两支长短相等)烛同样得时间燃烧得长度相同),它
们得长度之与为56厘将它们同时点燃一段时间后,长蜡烛同
短蜡烛点燃之前一样长,这时短蜡烛得长度有恰好就是长蜡烛得
2/3,点燃前长蜡烛有多长?
一个人步行每小时走5千米,如果骑自行车每1千米比步行少用
8分钟,那么她骑自行车得速度就是步行0
答案:
1.11-2=9
1111-22=1089=
111111-222=110889
则原式=11…1088…89(499个1与499个8)
2.54个矩形
3.解:长蜡烛与短蜡烛得差就是短蜡烛得1—2/3=1/3;
所以点燃前长蜡烛就是56+(1+1+1/3)X(1+1/3)=32(厘米)
4.步行1千米用60+5=12分钟,骑车用12—8=4分钟
124-4=3
即骑车速度就是步行得3倍
□奥八
5.计算:2098—5、5x7、5-0.25x55-45=
从100里减去25,加上20,再减去25,再加上20这样连续进行,直到
得数就是0为止,此时共减去了多少个25?加上了多少个20?
把一个长、宽、高分别就是5厘米、4厘米、2厘米得长方体截成
两个长方体,使这两个长方体得表面积之与最大,这时表面积之
与就是多少?
兄弟两人进行100米赛跑,当哥哥到达终点时,弟弟才在95米处,
如果让弟弟在原起跑点起跑,哥哥后退5米起跑,兄弟两得速度
仍与原来一样,那么获胜者就是谁?
答案:
(5)2098—5、5x7、5-0.25x55-45
=2098-55x(0、75+0、25)-45
=2098—(55+45)
=1998;
(6)减去25:(100-25)+(25-20)+1=16(次)
加上20:16—1=15(次);
(7)解:(5x44-5x2+4x2)x2+5x4x2=116(平方厘米);
/Q\
(3J00。
当弟弟跑到95米处时,哥哥追上了弟弟。剩下得5米,哥哥比弟
弟先跑完。
□奥二
1.计算:1-2+3-4+5-......-1994+1995=
某船在静水中得速度就是每小时20千米,它从上游甲地开往乙地
共用了6小时,水流速度每小时4千米,问从乙地返回甲地需要
多少时间?
在三角形ABC中,BD=2DC,AE=BE,已知三角形ABC得面积
就是18平方厘米,那么四边形AEDC得面积等于多少平方厘米?
4.有一个自然数,用它分别去除25、38、43,三个余数之与为18,
这个自然数就是几?
答案:
(1)998;
(2)(20+4)X6+(20-4)=9(小时);
(3)12平方厘米;
(4)解:所求数显然小于26,又由18+3=6可知,所求数大于6。(25
+38+43)-18=88,88就是所求数得整倍数,推知所求数就是8、
11或22。经验算,只有11符合条件
□奥四
1.计算:3、6x31、4+(31、4+12、5)x6、4=
A、B、C、D四个数,每次去掉一个数,将其余得三个数求平均
数,这样计算了4次,得到以下四个数:13、16、20、23
问:(1)A、B、C、D四个数得平均数就是多少?
(2)A、B、C、D中最大得数就是几?
一个长方体,它得高与宽都相等,如果把它得长去掉3厘米,就
成为表面积就是150平方厘米得正方体,原来长方体得体积就是
多少平方厘米?
4.12345678910111213…除以9得余数就是。
答案:
(1)原式=394;
(2)解:平均数:(13+16+20+23)+4=18
最大数:18x4-13x3=33
(3)解:正方体一个面得面积:150+6=25(平方厘米)
因为25=5x5,所以正方体棱长就是5厘米。
长方体体积:5x5x(5+3)=200(平方厘米)
(4)lo
因为所求余数与前1999个自然数之与除以9得余数相同。
□奥六
5.(下式中被乘数与乘数中各有500个“0”)
1.00—0024x0,00…005=
500个500个
一艘轮船顺水航行100千米,逆水航行64千米,共用9小时;顺
水航行80千米、逆水航行128千米共用12小时。问:轮船得顺
水速度与逆水速度各就是多少?
地形ABCD中,AB平行于CD,对角线AC,BD交于。点,OE
平行于AB、CD,交腰BC于E点,如果三角形ADE得面积就是
90平方厘米,那么三角形BOC得面积就是多少平方厘米。
8.在一根绳子位绻分点、15等分点及18等分点都剪一刀.这根绳
子被剪成了段?
答案
(2)0.00.......012
997个0
(2)V顺=120+6=20千米/小时;V逆=120+8=16千米/小时
(3)180平方厘米;
(4)12+15+18-(12,15)-(12,18)-(15,18)+(12,15,
18)=45—3—6—3+3=36段
□奥五
5.11.....1-22.......2=
\/\/
1000个1500个2
6.图中有个矩形:
有两支长短相等)烛同样得时间燃烧得长度相同),它
们得长度之与为56厘将它们同时点燃一段时间后,长蜡烛同
短蜡烛点燃之前一样长,这时短蜡烛得长度有恰好就是长蜡烛得
2/3,点燃前长蜡烛有多长?
一个人步行每小时走5千米,如果骑自行车每1千米比步行少用
8分钟,那么她骑自行车得速度就是步行-
答案:
5.11-2=9
1111-22=1089=
111111-222=110889
则原式=11…1088…89(499个1与499个8)
6.54个矩形
7.解:长蜡烛与短蜡烛得差就是短蜡烛得1—2/3=1/3;
所以点燃前长蜡烛就是56+(1+1+1/3)X(1+1/3)=32(厘米)
8.步行1千米用60+5=12分钟,骑车用12—8=4分钟
124-4=3
即骑车速度就是步行得3倍
□奥七
1.如果1!=1;
2!=2X1=2;
3!=3X2X1=6
计算:(1)6!=?(2)x!=5040,求x
有两只蜗牛同时从一个等腰三角形得顶点A出发,分别沿两
腰爬行。一只蜗牛每分钟行2、5米,另一只蜗牛每分钟行2米,8
分钟后在离C点6米处得P点相遇,BP得长度就是米。
3.下面图中一共有这些正方形得面积与就是
平方厘米。
5973
2
6
4
1-30这工,们得与不等于
7得倍数得可能共有种。
答案:
(1)6!=6X5X4X3X2X1=220;因为7!=5040,所以x=7。
(2)(2、5—2)X8=4米;6—4=2米。则BP长就是2米。
(3)共有长方形10X6=60个
这些长方形得面积之与就是:(5X4X1+9X3X2+7X2X3+3
X1X4)X(2X3X1+6X2X2+4X1X3)=138X42=5376平
方厘米。
排序:本数、行(列)数、序数
541
932
723
314
231
622
413
(4)5+5+4+1=15
□奥八
1.计算:222+333+444+555+666=
甲、乙两地相距80千米,汽车行完全程要1、6小时,而步行
要16小时,某人乘车从甲地出发去乙地,行了1、15小时后汽
车出了故障,她改为步行继续前进。
问:她到达目得地总共用了多少小时?
如图:正方形ABCD得边长为12厘米,P就是AB边上得任意
一点,M、N、I、H分别就是BC、AD上得三等分点(即
BM=MN=NC),E、F、G就是边CD上得四等分点,图中阴影
部分面积就是多少平方厘米。P
(1、6-1,15)x10+1.15=5、65(小时)
(3)48平方厘米
(4)6个。解:(252、140与308)=28=2?x7,28得约数得
个数即为所求,有(2+1)x(1+1)=6个
□奥九
5.计算:17、48x37-174.8x1、9+1、748x820=
双休日,学生们到郊外去玩。甲买了5只面包,乙买了同样得面包
4只,当午餐用。不料丙也参加午餐,但没有买面包,三人就均
分着吃。丙按买价拿出钱来,她给甲1元5角,给乙1元2角。
问:她这样算对不对,为什么?
长方体得表面积就是74平方厘米,其中一个底面得面积就是10
平方厘米,底面得周长就是9厘米。这个长方体得体积就是多少
立方厘米?
甲数除以乙数,乙数除以丙数,商相等,余数都就是2。甲、乙
两数之与就是478,那么甲、乙、丙三数之与就是多少?
答案:
(1)原式=1748;
(2)单价:(12+15)X3+(5+4)=9(角)
应给甲:9x5-(15+12)=18(角)=1元8角
应给乙:(15+12)-18=9(角)
所以,丙算得不对,应给甲1元8角,给乙9角。
侧面积:74-10x2=54(平方厘米)高:54+9=6(厘米)
长方体体积:10x6=60(立方厘米)
714或517或489O乙数应就是478-2=476得约数。经给算,
甲、乙、丙三数可以就是240、238、236或359、119、39
或410、68、IL
□奥十
5.计算:98+998+9998+99998=
甲、乙两名运动员在环行跑道上从同一地点同时背向而跑,已知
甲运动员跑一圈要80分钟。如果在出发后30分钟两人第一次相
遇。问:乙运动员跑一圈要多少分钟?
如图:一个长方形被分成4个不同得三角形,如果绿色三角形得
面积就是原长方形面积得],黄色三角形面积就是15平方厘米,
那么原长方形得面积就是多少平方厘米?
答案
(5)111092;
(6)甲得速度就是乙得速度:30+(80-30)=0、6倍
乙跑一圈:80x0、6=48(分钟)
(7)15+(0、5—0、2)=50(平方厘米)
(8)解:在2义2得正方形中,有4种取法。4x4得方格棋盘中共有3
x3=9个2x2得正方形。
所以不同得取法共有:3x3x4=36(种)
□奥一
5.计算:222+333+444+555+666=
甲、乙两地相距80千米,汽车行完全程要1、6小时,而步行
要16小时,某人乘车从甲地出发去乙地,行了1、15小时后汽
车出了故障,她改为步行继续前进。
问:她到达目得地总共用了多少小时?
如图:正方形ABCD得边长为12厘米,P就是AB边上得任意
一点,M、N、I、H分别就是BC、AD上得三等分点(即
BM=MN=NC),E、F、G就是边CD上得四等分点,图中阴影
部分面积就是多少平方厘米。P
8.252、140、308三个R得公约数?
答案:(1)444x5=2220
(2)解:汽车得速LJMJTE少1」1寸」+1、6=1。
(1、6-1,15)x10+1.15=5、65(小时)
(3)48平方厘米
(4)6个。解:(252、140与308)=28=2?x7,28得约数得
个数即为所求,有(2+1)x(1+1)=6个
□奥三
1.计算:0、75+9、75+99、75+999、75+1=
甲、乙两名运动员在环行跑道上从同一地点同时背向而行跑,出
发后30分钟两人第一次相遇。若已知甲运动员跑一圈要48分钟。
问:乙运动员跑一圈要多少分钟?
如图:一个长方形被分成A、B、C、D四个小长方形,已知A得
面积就是2平方厘米,B得面积就是3平方厘米,C得面积就是5
平方厘米,那么原长方形得面积就是多少平方厘米?
AC
4.对于任意区TBD:一种新运算“X”
AXB=A(A+l)(A+2).......(A+B-l)o
如果(XX3)派2=3660,那么X等于多少?
答案:
(1)原式=1111
(2)1+(1+30—1+48)=80(分钟)
(3)D=BxC+A=3x5+2=7、5(cm2)
长方形面积:A+B+C+D=2+3+5+7、5=17、5(cm2)
(4)由3660=60x61知:XX3=60。三个连续得自然数得乘积等于60,
只有3x4x5,所以X=3
□奥四
1.计算:(2+4+6+―+1996)-(1+3+5+―+1995)=
甲、乙、丙三个人进行竞走比赛,甲用10米/秒得速度走完全程,
甲用10米/秒得速度走完全程;乙用20米/秒得速度走完全程得一
半,又用5米/秒得速度走完余下得路程;丙在一半得时间内,按
20米/秒得速度行走,在另一半时间内又按5米/秒得速度行走。
请说出甲、乙、丙到达目得地得先后顺序。
3.用4个相同得等腰直角三角形相互交叠拼成下图,阴影正方形得
(1)原式=998;
(2)丙、甲、乙;
(3)图中得阴影部分面积就是正方形面积得1/4。
3x3+2x4=18(cm2)
4222
(4)1008=2x3x7;B=2x3x7=588O
□奥13
1.“火树银花楼七层,层层红灯倍加增,共有红灯三八一,试问四层几
盏灯?”
点子图中小正方形得边长为1厘米,以图中各点为顶点,围成面积
就是3平方厘米得三角形共个。
•••••
•••••
3.等腰梯形得对角线互相垂直,一条对角线得长就是9厘米,求梯形
1、解:1+2+22+23+24+25+26=127
3814-127=3
所以第一层有3盏灯,第四层
3X33=24
2.解:围成得三角形共有28个。
3.梯形面积40、5平方厘米。
4.已知妹妹学一知三,她用由学一知一得人来学需要18年。又已知姐姐学三忘
二,于就是妹妹6年学懂得知识,姐姐需要18X3=54年才能学懂。
□奥14
5.如果1!=1;
2!=2X1=2;
3!=3X2X1=6
计算:(1)6!=?(2)x!=5040,求x
有两只蜗牛同时从一个等腰三角形得顶点A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船舶泵机租赁合同
- 医疗创新项目管理流程
- 智能机场智能化施工合同
- 住院期间患者离院管理
- 建筑绿化安全合同协议书
- 医保业务数据
- 植物园水电设施施工协议
- 电力工程皮卡租赁协议
- 医疗器械招标评分索引表模板
- 神经外科护理观察典型案例
- 2024年保育员(中级)考试题库(含答案)
- 广东开放大学2024秋《形势与政策(专)》形成性考核参考答案
- 九年级语文上册其中知识点复习
- 2024年江苏省泰州市保安员理论考试题库及答案(完整)
- 糖尿病酮症酸中毒
- 人教版(2024新版)七年级上册数学期中模拟试卷(无答案)
- 企业法律合规与内部审计制度
- 2024年应急指示灯具:消防应急灯合作协议书
- 《喜迎建队日 争做好少年》主题班会教案3篇
- 2024-2025学年鲁教版(五四制)八年级数学上册期中测试题
- 湖北省武汉市部分学校2022-2023学年高一上学期期中联考英语试卷
评论
0/150
提交评论