2025届安徽省滁州市全椒县九年级数学第一学期期末经典模拟试题含解析_第1页
2025届安徽省滁州市全椒县九年级数学第一学期期末经典模拟试题含解析_第2页
2025届安徽省滁州市全椒县九年级数学第一学期期末经典模拟试题含解析_第3页
2025届安徽省滁州市全椒县九年级数学第一学期期末经典模拟试题含解析_第4页
2025届安徽省滁州市全椒县九年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省滁州市全椒县九年级数学第一学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()A. B. C. D.2.计算:x(1﹣)÷的结果是()A. B.x+1 C. D.3.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.任意画一个三角形,其内角和是360°D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球4.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A,B,与反比例函数(k>0)在第一象限的图象交于点E,F,过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C,若,则△OEF与△CEF的面积之比是()A.2:1 B.3:1 C.2:3 D.3:25.下列方程中,为一元二次方程的是()A.x=2 B.x+y=3 C. D.6.2018年,临江市生产总值为1587.33亿元,请用科学记数法将1587.33亿表示为()A.1587.33×108 B.1.58733×1013C.1.58733×1011 D.1.58733×10127.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克23元,连续两次上涨后,售价上升到每千克40元,则下列方程中正确的是()A. B.C. D.8.如图是二次函数y=ax2+bx+c(a≠1)的图象的一部分,给出下列命题:①a+b+c=1;②b>2a;③方程ax2+bx+c=1的两根分别为﹣3和1;④当x<1时,y<1.其中正确的命题是()A.②③ B.①③ C.①② D.①③④9.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.10.在△ABC中,I是内心,∠BIC=130°,则∠A的度数是()A.40° B.50° C.65° D.80°二、填空题(每小题3分,共24分)11.如图,中,,且,,则___________12.一个扇形的弧长是,面积是,则这个扇形的圆心角是___度.13.计算:_____.14.写出一个你认为的必然事件_________.15.如图,AB为⊙O的直径,CD是弦,且CD⊥AB于点P,若AB=4,OP=1,则弦CD所对的圆周角等于_____度.16.如图,已知∠AOB=30°,在射线OA上取点O1,以点O1为圆心的圆与OB相切;在射线O1A上取点O2,以点O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以点O3为圆心,O3O2为半径的圆与OB相切……,若⊙O1的半径为1,则⊙On的半径是______________.17.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则______.18.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)三、解答题(共66分)19.(10分)如图,已知直线y=-2x+3与抛物线y=x2相交于A,B两点,O为坐标原点.(1)求点A和B的坐标;(2)连结OA,OB,求△OAB的面积.20.(6分)如图,已知△ABO中A(﹣1,3),B(﹣4,0).(1)画出△ABO绕着原点O按顺时针方向旋转90°后的图形,记为△A1B1O;(2)求第(1)问中线段AO旋转时扫过的面积.21.(6分)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类女生有名,D类男生有名,将上面条形统计图补充完整;(2)扇形统计图中“课前预习不达标”对应的圆心角度数是;(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,22.(8分)如图,在平面直角坐标系中A点的坐标为(8,y),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)若函数y=3x与y=的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比.23.(8分)如图,在平面直角坐标系中,一次函数与反比例函数的图象相交于两点,过点作轴于点,,,点的坐标为.(1)求一次函数和反比例函数的表达式;(2)求的面积;(3)是轴上一点,且是等腰三角形,请直接写出所有符合条件的点坐标.24.(8分)一个不透明的布袋里装有3个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,求出两次都摸到白球的概率.25.(10分)某日王老师佩戴运动手环进行快走锻炼两次锻炼后数据如下表,与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的倍.设王老师第二次锻炼时平均步长减少的百分率为.注:步数平均步长距离.项目第一次锻炼第二次锻炼步数(步)①_______平均步长(米/步)②_______距离(米)(1)根据题意完成表格;(2)求.26.(10分)如图,四边形ABCD中,对角线AC、BD相交于点O,且AD//BC,BD的垂直平分线经过点O,分别与AD、BC交于点E、F(1)求证:四边形ABCD为平行四边形;(2)求证:四边形BFDE为菱形.

参考答案一、选择题(每小题3分,共30分)1、B【分析】连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S扇形-S△ODC即可求得.【详解】连接OD、OC,∵AB是直径,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD=2∠DBC=90°,∴S阴影=S扇形−S△ODC=−×3×3=−.故答案选B.【点睛】本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.2、C【分析】直接利用分式的性质化简进而得出答案.【详解】解:原式==.故选:C.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.3、D【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【详解】解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C、任意画一个三角形,其内角和是360°的概率为:0,不符合这一结果,故此选项错误;D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.【点睛】本题考查频率估算概率,关键在于通过图象得出有利信息.4、A【分析】根据E,F都在反比例函数的图象上设出E,F的坐标,进而分别得出△CEF的面积以及△OEF的面积,然后即可得出答案.【详解】解:设△CEF的面积为S1,△OEF的面积为S2,过点F作FG⊥BO于点G,EH⊥AO于点H,∴GF∥MC,∴=,∵ME•EH=FN•GF,∴==,设E点坐标为:(x,),则F点坐标为:(3x,),∴S△CEF=(3x﹣x)(﹣)=,∵S△OEF=S梯形EHNF+S△EOH﹣S△FON=S梯形EHNF=(+)(3x﹣x)=k∴==.故选:A.【点睛】此题主要考查了反比例函数的综合应用以及三角形面积求法,根据已知表示出E,F的点坐标是解题关键,有一定难度,要求同学们能将所学的知识融会贯通.5、C【解析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、x=2是一元一次方程,故A错误;B、x+y=3是二元一次方程,故B错误;C、是一元二次方程,故C正确;D、是分式方程,故D错误;故选:C.【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是关键.6、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:用科学记数法将1587.33亿表示为1587.33×108=1.58733×1.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,为整数,表示时关键要正确确定的值以及的值.7、A【分析】根据增长率a%求出第一次提价后的售价,然后再求第二次提价后的售价,即可得出答案.【详解】根据题意可得:23(1+a%)2=40,故答案选择A.【点睛】本题考查的是一元二次方程在实际生活中的应用,比较简单,记住公式“增长后的量=增长前的量×(1+增长率)”.8、B【分析】利用x=1时,y=1可对①进行判断;利用对称轴方程可对②进行判断;利用对称性确定抛物线与x轴的另一个交点坐标为(-3,1),则根据抛物线与x轴的交点问题可对③进行判断;利用抛物线在x轴下方对应的自变量的范围可对④进行判断.【详解】∵x=1时,y=1,∴a+b+c=1,所以①正确;∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,所以②错误;∵抛物线与x轴的一个交点坐标为(1,1),而抛物线的对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点坐标为(﹣3,1),∴方程ax2+bx+c=1的两根分别为﹣3和1,所以③正确;当﹣3<x<1时,y<1,所以④错误.故选:B.【点睛】本题考查的是抛物线的性质及对称性,掌握二次函数的性质及其与一元二次方程的关系是关键.9、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.10、D【解析】试题分析:已知∠BIC=130°,则根据三角形内角和定理可知∠IBC+∠ICB=50°,则得到∠ABC+∠ACB=100度,则本题易解.解:∵∠BIC=130°,∴∠IBC+∠ICB=50°,又∵I是内心即I是三角形三个内角平分线的交点,∴∠ABC+∠ACB=100°,∴∠A=80°.故选D.考点:三角形内角和定理;角平分线的定义.二、填空题(每小题3分,共24分)11、1【分析】由及,得,再证△ADE∽△ABC,推出,代入值,即可求出BC.【详解】解:∵,,

∴∵DE∥BC,

∴△ADE∽△ABC,

∴,

∵,

∴,则BC=1,

故答案为:1.【点睛】本题考查了相似三角形的性质和判定的应用,注意:相似三角形的对应边的比相等.12、150【分析】根据弧长公式计算.【详解】根据扇形的面积公式可得:,解得r=24cm,再根据弧长公式,解得.故答案为:150.【点睛】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式,弧长公式.13、3【解析】根据二次根式的乘法法则和零指数幂的意义运算【详解】原式=+1=2+1=3.【点睛】本题考查了二次根式的混合计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算.14、瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.15、60或1.【分析】先确定弦CD所对的圆周角∠CBD和∠CAD两个,再利用圆的相关性质及菱形的判定证四边形ODBC是菱形,推出,根据圆内接四边形对角互补即可分别求出和的度数.【详解】如图,连接OC,OD,BC,BD,AC,AD,∵AB为⊙O的直径,AB=4,∴OB=2,又∵OP=1,∴BP=1,∵CD⊥AB,∴CD垂直平分OB,∴CO=CB,DO=DB,又OC=OD,∴OC=CB=DB=OD,∴四边形ODBC是菱形,∴∠COD=∠CBD,∵∠COD=2∠CAD,∴∠CBD=2∠CAD,又∵四边形ADBC是圆内接四边形,∴∠CAD+∠CBD=180°,∴∠CAD=60°,∠CBD=1°,∵弦CD所对的圆周角有∠CAD和∠CBD两个,故答案为:60或1.【点睛】本题考查了圆周角的度数问题,掌握圆的有关性质、菱形的性质以及判定定理是解题的关键.16、2n−1【分析】作O1C、O2D、O3E分别⊥OB,易找出圆半径的规律,即可解题.【详解】解:作O1C、O2D、O3E分别⊥OB,∵∠AOB=30°,∴OO1=2CO1,OO2=2DO2,OO3=2EO3,∵O1O2=DO2,O2O3=EO3,∴圆的半径呈2倍递增,∴⊙On的半径为2n−1

CO1,∵⊙O1的半径为1,∴⊙O10的半径长=2n−1,故答案为:2n−1.【点睛】本题考查了圆切线的性质,考查了30°角所对直角边是斜边一半的性质,本题中找出圆半径的规律是解题的关键.17、【解析】利用位似图形的性质结合位似比等于相似比得出答案.【详解】四边形ABCD与四边形EFGH位似,其位似中心为点O,且,,则,故答案为:.【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.18、不公平.【分析】先根据题意画出树状图,然后根据概率公式求解即可.【详解】画出树状图如下:共有9种情况,积为奇数有4种情况所以,P(积为奇数)=即甲获胜的概率是,乙获胜的概率是所以这个游戏不公平.【点睛】解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.三、解答题(共66分)19、(1)A(1,1),B(-3,9);(2)6.【分析】(1)将直线与抛物线联立解方程组,即可求出交点坐标;(2)过点A与点B分别作AA1、BB1垂直于x轴,由图形可得△OAB的面积可用梯形AA1B1B的面积减去△OBB1的面积,再减去△OAA1得到.【详解】(1)∵直线y=-2x+3与抛物线y=x2相交,∴将直线与抛物线联立得,解得或,∴A(1,1),B(-3,9);(2)过点A与点B分别作AA1、BB1垂直于x轴,如下图所示,由A、B的坐标可知AA1=1,BB1=9,OB1=3,OA1=1,A1B1=4,梯形AA1B1B的面积=,△OBB1的面积=,△OAA1的面积=,∴△OAB的面积=.故答案为6.【点睛】本题考查了求一次函数与二次函数的交点和坐标系中三角形的面积计算,求函数图像交点,就是将两个函数联立解方程组,坐标系中不规则图形的面积通常采用割补法计算.20、(1)如图所示,△A1B1O即为所求;见解析;(2)线段AO旋转时扫过的面积为.【分析】(1)根据题意,画出图形即可;(2)先根据勾股定理求出AO,再根据扇形的面积公式计算即可.【详解】解:(1)根据题意,将△OAB绕点O顺时针旋转90°,如图所示,△A1B1O即为所求;(2)根据勾股定理:线段AO旋转时扫过的面积为:=.【点睛】此题考查的是图形的旋转和求线段旋转时扫过的面积,掌握图形旋转的性质和扇形的面积公式是解决此题的关键.21、(1)3,1;(2)36°;(3)【分析】(1)根据B类有6+4=10人,所占的比例是50%,据此即可求得总人数,利用总人数乘以对应的比例即可求得C类的人数,然后求得C类中女生人数,同理求得D类男生的人数;(2)利用360°×课前预习不达标百分比,即可解答;

(3)利用列举法即可表示出各种情况,然后利用概率公式即可求解.【详解】(1)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),故C类女生有3名,D类男生有1名;补充条形统计图,故答案为3,1;(2)360°×(1﹣50%﹣25%﹣15%)=36°,答:扇形统计图中“课前预习不达标”对应的圆心角度数是36°;故答案为36°;(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)=.【点睛】此题考查条形统计图和扇形统计图的综合运用,解题关键在于读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、y=;【解析】试题分析:(1)先根据锐角三角函数的定义,求出OA的值,然后根据勾股定理求出AB的值,然后由C点是OA的中点,求出C点的坐标,然后将C的坐标代入反比例函数y=中,即可确定反比例函数解析式;(2)先将y=3x与y=联立成方程组,求出点M的坐标,然后求出点D的坐标,然后连接BC,分别求出△OMB的面积,△OBC的面积,△BCD的面积,进而确定四边形OCDB的面积,进而可求三角形OMB与四边形OCDB的面积的比.试题解析:(1)∵A点的坐标为(8,y),∴OB=8,∵AB⊥x轴于点B,sin∠OAB=,∴,∴OA=10,由勾股定理得:AB=,∵点C是OA的中点,且在第一象限内,∴C(4,3),∵点C在反比例函数y=的图象上,∴k=12,∴反比例函数解析式为:y=;(2)将y=3x与y=联立成方程组,得:,解得:,,∵M是直线与双曲线另一支的交点,∴M(﹣2,﹣6),∵点D在AB上,∴点D的横坐标为8,∵点D在反比例函数y=的图象上,∴点D的纵坐标为,∴D(8,),∴BD=,连接BC,如图所示,∵S△MOB=•8•|﹣6|=24,S四边形OCDB=S△OBC+S△BCD=•8•3+=15,∴.考点:反比例函数与一次函数的交点问题.23、(1),;(2)9;(3)点坐标为(0,5)或(0,-5)或(0,8)或【分析】(1)先根据勾股定理求出OD=3,AD=4,得出点A(3,4),进而求出反比例函数解析式,再求出点B坐标,最后用待定系数法求出直线AB解析式;(2)求出直线AB与y轴的交点坐标,再根据解答即可;(3)设出点P坐标,进而表示出OP,AP,OA,利用等腰三角形的两边相等建立方程求解即可得出结论.【详解】(1)∵,∴设,则,,∴,∴,,∴点的坐标为(3,4),∵过点,∴,∴,当时,,∴点坐标为(-6,-2),∵直线过,∴解得∴直线解析式为.(2)如图,记直线与轴交于点,对于,当时,,∴点坐标为(0,2),∴.(3)设点P(0,m),∵A(3,4),O(0,0),∴OA=5,OP=|m|,AP=,∵△AOP是等腰三角形,∴①当OA=OP时,∴|m|=5,∴m=±5,∴P(0,5)或(0,-5),②当OA=AP时,∴5=,∴m=0(舍)或m=8,∴P(0,8),③OP=AP时,∴|m|=,∴m=,∴P(0,),即:当P点坐标为(0,8),(0,5),(0,-5)或(0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论