江苏省泗阳县2025届九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
江苏省泗阳县2025届九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
江苏省泗阳县2025届九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
江苏省泗阳县2025届九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
江苏省泗阳县2025届九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省泗阳县2025届九年级数学第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若方程(m﹣1)x2﹣4x=0是关于x的一元二次方程,则m的取值范围是()A.m≠1 B.m=1 C.m≠0 D.m≥12.如图,在△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在△ABC边上C’处,并且C'D//BC,则CD的长是()A. B. C. D.3.通过对《一元二次方程》全章的学习,同学们掌握了一元二次方程的三种解法:配方法、公式法、因式分解法,其实,每种解法都是把一个一元二次方程转化为两个一元一次方程来解,体现的基本思想是()A.转化 B.整体思想 C.降次 D.消元4.如图工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间线段最短 B.两点确定一条直线C.三角形具有稳定性 D.长方形的四个角都是直角5.已知点都在函数的图象上,则y1、y2、y3的大小关系是()A.y2>y1>y3 B.y1>y2>y3 C.y1>y3>y2 D.y3>y1>y26.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣367.如图,某数学兴趣小组将长为,宽为的矩形铁丝框变形为以为圆心,为半径的扇形(忽略铁丝的粗细),则所得扇形的面积为()A. B. C. D.8.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是()A. B. C. D.9.如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于()A.20° B.30° C.40° D.50°10.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A. B.C. D.二、填空题(每小题3分,共24分)11.连掷两次骰子,它们的点数都是4的概率是__________.12.若是关于的方程的一个根,则的值为_________________.13.方程和方程同解,________.14.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A,B向x轴作垂线,垂足分别为D,C,若矩形ABCD的面积是9,则k的值为_____.15.已知点P是线段AB的黄金分割点,AP>PB.若AB=1.则AP=__(结果保留根号).16.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.17.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.18.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).三、解答题(共66分)19.(10分)如图直角坐标系中,为坐标原点,抛物线交轴于点,过作轴,交抛物线于点,连结.点为抛物线上上方的一个点,连结,作垂足为,交于点.(1)求的长;(2)当时,求点的坐标;(3)当面积是四边形面积的2倍时,求点的坐标.20.(6分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则售价应定为多少?这时应进货多少个?21.(6分)某次数学竞赛共有3道判断题,认为正确的写“”,错误的写“”,小明在做判断题时,每道题都在“”或“”中随机写了一个.(1)小明做对第1题的概率是;(2)求小明这3道题全做对的概率.22.(8分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=6,DE=1,求⊙O的半径长.23.(8分)如图,在平面直角坐标系中,矩形ABCD的边CD在y轴上,点A在反比例函数的图象上,点B在反比例函数的图象上,AB交x轴与点E,.

(1)求k的值;(2)若,点P为y轴上一动点,当的值最小时,求点P的坐标.24.(8分)中,∠ACB=90°,AC=BC,D是BC上一点,连接AD,将线段AD绕着点A逆时针旋转,使点D的对应点E在BC的延长线上。过点E作EF⊥AD垂足为点G,(1)求证:FE=AE;(2)填空:=__________(3)若,求的值(用含k的代数式表示).25.(10分)有一个直径为1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.(1)求被剪掉阴影部分的面积:(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?26.(10分)已知抛物线经过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并写出点的坐标;(2)如图,点分别在线段上(点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;(3)若点在抛物线上,且,试确定满足条件的点的个数.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程可得m−1≠0,再解即可.【详解】解:由题意得:m﹣1≠0,解得:m≠1,故选:A.【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2、A【分析】先由求出AC,再利用平行条件得△AC'D∽△ABC,则对应边成比例,又CD=C′D,那么就可求出CD.【详解】∵∠B=90°,AB=6,BC=8,∴AC==10,∵将△ABC沿DE折叠,使点C落在AB边上的C'处,∴CD=C'D,∵C'D∥BC,∴△AC'D∽△ABC,∴,即,∴CD=,故选A.【点睛】本题考查了翻折变换(折叠问题),相似三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.3、C【分析】根据“每种解法都是把一个一元二次方程转化为两个一元一次方程来解”进行判断即可.【详解】每种解法都是把一个一元二次方程转化为两个一元一次方程来解,也就是“降次”,故选:C.【点睛】本题考查一元二次方程解法的理解,读懂题意是关键.4、C【分析】根据三角形的稳定性,可直接选择.【详解】加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.

故选:C.5、A【分析】根据反比例函数图象上点的坐标特征,将点分别代入函数,求得的,然后比较它们的大小.【详解】解:把分别代入:∵>>,∴>>故选:A.【点睛】本题考查的是反比例函数的性质,考查根据自变量的值判断函数值的大小,掌握判断方法是解题的关键.6、B【解析】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=(k<0)的图象经过点B,∴﹣4=,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.7、B【分析】根据已知条件可得弧BD的弧长为6,然后利用扇形的面积公式:计算即可.【详解】解:∵矩形的长为6,宽为3,

∴AB=CD=6,AD=BC=3,

∴弧BD的长=18-12=6,故选:B.【点睛】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式8、A【解析】左视图从左往右看,正方形的个数依次为:3,1.故选A.9、A【解析】由性质性质得,∠D′=∠D=90°,∠4=α,由四边形内角和性质得∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°.【详解】如图,因为四边形ABCD为矩形,所以∠B=∠D=∠BAD=90°,因为矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,所以∠D′=∠D=90°,∠4=α,因为∠1=∠2=110°,所以∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°,所以α=20°.故选:A【点睛】本题考核知识点:旋转角.解题关键点:理解旋转的性质.10、D【解析】点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.故选D.点睛:本题考查函数的图象.分三段依次考虑△ADE的面积变化情况是解题的关键.二、填空题(每小题3分,共24分)11、【分析】首先根据题意列表,然后根据表格求得所有等可能的结果与它们的点数都是4的情况数,再根据概率公式求解即可.【详解】解:列表得:1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)∴一共有36种等可能的结果,它们的点数都是4的有1种情况,∴它们的点数都是4的概率是:,故答案为:.【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.12、【分析】将x=2代入方程,列出含字母a的方程,求a值即可.【详解】解:∵x=2是方程的一个根,∴,解得,a=.故答案为:.【点睛】本题考查方程解的定义,理解定义,方程的解是使等式成立的未知数的值是解答此题的关键.13、【解析】分别求解两个方程的根即可.【详解】解:,解得x=3或m;,解得x=3或-1,则m=-1,故答案为:-1.【点睛】本题考查了运用因式分解法解一元二次方程.14、1.【分析】过点A作AE⊥y轴于点E,首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是9,则矩形EOCB的面积为:4+9=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=上,∴矩形EODA的面积为:4,∵矩形ABCD的面积是9,∴矩形EOCB的面积为:4+9=1,则k的值为:xy=k=1.故答案为1.【点睛】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.15、5﹣5【分析】根据黄金分割比的定义计算即可.【详解】根据黄金分割比,有故答案为:.【点睛】本题主要考查黄金分割比,掌握黄金分割比的定义是解题的关键.16、50(1﹣x)2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.17、或.【解析】由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角.故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形.因此,本题需要按以下两种情况分别求解.(1)当∠ONM=90°时,则DN⊥BC.过点E作EF⊥BC,垂足为F.(如图)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位线,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位线,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)当∠MON=90°时,则DN⊥ME.过点E作EF⊥BC,垂足为F.(如图)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.综上所述,DO的长是或.故本题应填写:或.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解.另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.18、增大.【分析】根据二次函数的增减性可求得答案【详解】∵二次函数y=x2的对称轴是y轴,开口方向向上,∴当y随x的增大而增大,故答案为增大.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.三、解答题(共66分)19、(1)6;(2);(3)或【分析】(1)令x=0求得A的坐标,再根据轴,令y=3即可求解;(2)证明,则,即可求解;(3)当的面积是四边形的面积的2倍时,则,,即可求解.【详解】解:(1)∵抛物线交轴于点,∴,∵轴,∴B的纵坐标为3,设B的横坐标为a,则,解得,(舍),∴,∴;(2)设,,,,,解得.(3)当的面积是四边形的面积的2倍时,则,得:,,或【点睛】本题考查的是二次函数综合,涉及到一次函数、三角形相似、图形的面积计算等,逐一分类讨论.20、当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.【解析】试题分析:利用销售利润=售价-进价,根据题中条件可以列出利润与的关系式,求出即可.试题解析:设每个商品的定价是元.由题意,得整理,得解得都符合题意.答:当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.21、(1);(2)【分析】(1)根据概率公式求概率即可;(2)写出小明做这3道题,所有可能出现的等可能的结果,然后根据概率公式求概率即可.【详解】解:(1)∵第一题可以写A或B,共2种结果,其中作对的可能只有1种,∴小明做对第1题的概率是1÷2=故答案为;(2)小明做这3道题,所有可能出现的结果有:,,,,,,,,共有8种,它们出现的可能性相同,所有的结果中,满足“这3道题全做对”(记为事件)的结果只有1种,∴小明这3道题全做对的概率为1÷8=.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.22、(1)见解析;(2)⊙O的半径为1.【分析】(1)根据圆周角定理即可得出∠A=∠D,∠C=∠ABD,从而可求证△AEC∽△DEB;

(2)由垂径定理可知BE=3,设半径为r,由勾股定理可列出方程求出r.【详解】解:(1)根据“同弧所对的圆周角相等”,

得∠A=∠D,∠C=∠ABD,

∴△AEC∽△DEB

(2)∵CD⊥AB,O为圆心,

∴BE=AB=3,

设⊙O的半径为r,

∵DE=1,则OE=r−1,

在Rt△OEB中,

由勾股定理得:OE2+EB2=OB2,

即:(r−1)2+32=r2,

解得r=1,即⊙O的半径为1.【点睛】本题考查圆的综合问题,涉及相似三角形的判定与性质,勾股定理,垂径定理等知识,综合程度较高,需要灵活运用所学知识.23、(1);(2)(0,)【分析】(1)设B(a,b),由反比例函数图象上点的坐标特征用函数a的代数式表示出来b,进而可得ab=6,再根据可得,再设A(m,n),可得,再根据即可求得k的值;(2)先根据求得点A、B的坐标,再利用轴对称找到符合题意的点P,求出直线的函数关系式,进而可求出点P的坐标.【详解】解:(1)设B(a,b),∵B在反比例函数的图象上,∴b=,∴ab=6,即,∵.∴,∴设A(m,n),∵A在反比例函数的图象上,∴,∴,∵,∴,∴,∴,即;(2)∵,∴当a=2时,b==3,∴B(2,3),当m=2时,∴A(2,-2),作点B关于y轴的对称点(-2,3),连接,交y轴于点P,连接PB,则PB=,∴,∵两点之间,线段最短,∴此时的即可取得最小值,设为y=k1x+b1,将(-2,3),A(2,-2)代入得解得∴令x=0,则∴点P的坐标为(0,).

【点睛】本题考查了反比例函数图象上点的坐标特征、两点之间线段最短以及用待定系数法求一次函数关系式,熟练掌握反比例函数和一次函数的性质是解决本题的关键.24、(1)证明见解析;(2);(3).【分析】(1)由得,由∠AGH=∠ECH=90°可得∠DAC=∠BEF,由轴对称的性质得到∠DAC=∠EAC,从而可得∠BEF=∠EAC,利用三角形外角的性质得到,即可得到结论成立;(2)过点E作EM⊥BE,交BA延长线于点M,作AN⊥ME于N,先证明,得到BF=AM,再利用等腰直角三角形的性质和矩形的性质得到,DE=2CE=2AN,即可得到答案;(3)先利用相似三角形的判定证明,得到,从而得到,再证明,即可得到.【详解】(1)证明:∵,,∵垂足为点,,∵,,∵,,∵,,在和中,,,,,,∵,,,;(2)如图,过点E作EM⊥BE,交BA延长线于点M,作AN⊥ME于N,∵∠ACB=90°,AC=BC,∴∠B=45°,∵EM⊥BE,∴∠M=∠B=45°,由(1)已证:,,即,在和中,,∴,∴BF=AM,∵AN⊥ME,∠M=45°,∴是等腰直角三角形,∴AN=MN,AM=,易知四边形ACEN是矩形,∴CE=AN=MN,∵DE=2CE=2AN,∴,故答案为:;(3)∵,,,∵,由(1)知,,由(1)知,,,设,,则,,,,,,∵,,,.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,三角形的外角性质,全等三角形的判定和性质,以及等角对等边等性质,解题的关键是熟练掌握相似三角形的判定和性质进行解题,注意角度之间的相互转换.25、(1)平方米;(2)米;【分析】(1)先根据圆周角定理可得弦BC为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论