版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page27第6讲平行四边形单元整体分类总复习考点一多边形的内角和、外角和学问点睛:n边形的内角和为,外角和为360°,反过来,已知一些内、外角的度数或数量关系也能确定多边形的边数对角线公式从n边形的一个顶点可引出(n-3)条对角线,将n边形分成(n-2)个三角形,n边形的对角线共有条类题训练1.(九龙坡区校级开学)已知一个多边形的每一个内角都比它相邻的外角的4倍多30°,这个多边形是()A.十边形 B.十一边形 C.十二边形 D.十三边形【分析】设这个多边形为n边形,依据多边形的内角和公式及外角和定理即可求解.【解答】解:设这个多边形为n边形,它的外角分别为x1,x2,⋯,xn,则对应的内角分别为4x1+30°,4x2+30°,⋯,4xn+30°,依据题意得,x1+x2+⋯+xn=360°,(4x1+30°)+(4x2+30°)+⋯+(4xn+30°)=(n﹣2)×180°,∴4×(x1+x2+⋯+xn)+30°n=(n﹣2)×180°,∴4×360°+30°n=(n﹣2)×180°,∴1440°+30°n=180°n﹣360°,∴150°n=1800°,∴n=12,故选:C.2.(黄冈期末)一个多边形的每个外角都等于40°,那么从这个多边形的一个顶点动身的对角线的条数是()A.9条 B.8条 C.7条 D.6条【分析】首先计算出多边形的边数,再依据n边形从一个顶点动身可引出(n﹣3)条对角线可得答案.【解答】解:多边形的边数:360°÷40°=9,从一个顶点动身可以引对角线的条数:9﹣3=6(条),故选:D.3.(海阳市期末)小东在计算多边形的内角和时不当心多计算一个内角,得到的和为1350°,则这个多边形的边数是()A.7 B.8 C.9 D.10【分析】依据多边形的内角和公式(n﹣2)•180°列方程即可得解.【解答】解:设多边形的边数为n,多加的内角度数为α,则(n﹣2)•180°=1350°﹣α,∵0°<α<180°,∴(1350﹣180)÷180<n﹣2<1350÷180,∴6<n−2<7,∵n为正整数,∴n=9,∴这个多边形的边数n的值是9.故选:C.4.(丹东期末)假如过一个多边形的一个顶点的对角线有5条,则该多边形是()A.九边形 B.八边形 C.七边形 D.六边形【分析】依据从每一个顶点动身可以作的对角线的总条数为n﹣3计算即可.【解答】解:∵过一个多边形的一个顶点的对角线有5条,∴多边形的边数为5+3=8,故选:B.5.(天元区期末)如图,五边形ABCDE是正五边形,若l1∥l2,则∠1﹣∠2的值是()A.36° B.72° C.108° D.144°【分析】由l1∥l2,得∠2=∠BMD.由∠1=∠BMD﹣∠MBC,得∠BMD=∠1﹣∠MBC,那么∠1﹣∠2=∠MBC.欲求∠1﹣∠2,需求∠MBC.由正五边形的性质,得∠MBC=72°,从而解决此题.【解答】解:如图,AB的延长线交l2于点M,∵五边形ABCDE是正五边形,∴正五边形ABCDE的每个外角相等.∴∠MBC==72°.∵l1∥l2,∴∠2=∠BMD,∵∠1=∠BMD+∠MBC,∴∠BMD=∠1﹣∠MBC,∴∠1﹣∠2=∠MBC=72°.故选:B.6.(浦江县期末)如图,在四边形ABCD中,∠C=110°,与∠BAD,∠ABC相邻的外角都是110°,则∠ADC的外角α的度数是()A.90° B.85° C.80° D.70°【分析】依据多边形外角和为360°,进行求解即可.【解答】解:∵在四边形ABCD中,∠C=110°,∴∠C相邻的外角度数为:180°﹣110°=70°,∴∠α=360°﹣70°﹣110°﹣110°=70°.故选:D.考点二平行四边形的性质学问点睛:平行四边形的性质定理∶平行四边形的对边平行且相等.平行四边形的对角相等,邻角互补.平行四边形的对角线相互平分.利用平行四边形的性质证明边、角关系时,确定要找准那些对解题有帮助的性质,有时也可以依据结论逆向推理看是否符合那些性质.类题训练1.(任城区校级期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,则下列推断错误的是()A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD【分析】依据平行四边形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∴AD∥BC,故B正确;∴AD=BC,故C正确;故选:D.2.(鄞州区校级期末)如图,在▱ABCD中,过点C作CE⊥AB,垂足为E,若∠BAD=120°,则∠BCE的度数为()A.30° B.20° C.40° D.35°【分析】由平行四边形的性质得出∠B+∠BAD=180°,可得∠B的度数,由直角三角形的两上锐角互余得出∠BCE=90°﹣∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B+∠BAD=180°,∵∠BAD=120°,∴∠B=60°,∵CE⊥AB,∴∠E=90°,∴∠BCE=90°﹣∠B=90°﹣60°=30°;故选:A.3.(秀英区校级月考)如图,在▱ABCD中,AD=8,AB=5,AE平分∠BAD交边BC于点E,DF平分∠ADC交边BC于点F,则EF=()A.2 B.2.5 C.3 D.3.5【分析】依据平行线的性质得到∠ADF=∠DFC,由DF平分∠ADC,得到∠ADF=∠CDF,等量代换得到∠DFC=∠FDC,依据等腰三角形的判定得到CF=CD,同理BE=AB,依据已知条件得到四边形ABCD是平行四边形,依据平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【解答】解:在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∴BC=BE+CF﹣EF=2AB﹣EF=8,∴EF=2;故选:A.4.(绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为()A.(1,1) B.(1,2) C.(2,1) D.(2,2)【分析】分别过E,C两点作EF⊥x轴,CG⊥x轴,垂足分别为F,G,由平行四边形的性质可得CG=2EF,AG=2AF,结合A,E两点坐标可求解CG,OG的长,进而求解C点坐标.【解答】解:分别过E,C两点作EF⊥x轴,CG⊥x轴,垂足分别为F,G,∴EF∥CG,∵四边形ABCD为平行四边形,∴AE=CE,∴AG=2AF,CG=2EF,∵A(4,0),E(3,1),∴OA=4,OF=3,EF=1,∴AF=OA﹣OF=4﹣3=1,CG=2,∴AG=2,∴OG=OA﹣OG=4﹣2=2,∴C(2,2).故选:D.5.(越秀区校级开学)如图,平行四边形ABCD的对角线AC,BD交于点O,AB=,∠AOB=60°,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+2EF的值为()A.+1 B. C. D.【分析】依据含30°角的直角三角形的性质可求解AO=1,BO=2,利用三角形的面积公式计算△ABO的面积,结合平行四边形的性质可得DO=BO=2,S△ADO=S△ABO=,即可得到OE+2EF的值.【解答】解:∵∠BAO=90°,∠AOB=60°,∴∠ABO=30°,∴BO=2AO,∵AB=,∴AO=1,BO=2,∴S△ABO=AO•AB=,∵四边形ABCD为平行四边形,∴DO=BO=2,S△ADO=S△ABO=,∵OF⊥AO,EF⊥OD,∴S△ADO=S△AEO+S△EDO===,即OE+2EF=.故选:B.6.(九江期末)在平行四边形ABCD中,对角线AC长为8cm,∠BAC=30°,AB=5cm,则它的面积为.【分析】依据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.【解答】解:如图,过B作BE⊥AC于E.在直角三角形ABE中,∠BAC=30°,AB=5cm,∴BE=AB•sin∠CAB=5×=2.5(cm),S△ABC=AC•BE÷2=10(cm2),∴S▱ABCD=2S△ABC=20cm2.故答案为:20cm2.7.(鄞州区校级期末)平行四边形ABCD中,对角线AC和BD相交于点O,假如AC=10,BD=6,AB=m,那么m的取值范围是.【分析】由四边形ABCD是平行四边形,依据平行四边形的对角线相互平分,即可求得OA与OB的值,然后依据三角形三边关系,即可求得m的取值范围.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=AC=×10=5,OB=OD=BD=×6=3,∵OA﹣OB<AB<OA+OB,∴5﹣3<m<5+3,∴m的取值范围是:2<m<8.故答案为:2<m<8.8.(桓台县期末)如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.【分析】作AM⊥BC于M,如图所示:依据直角三角形的性质得到BM=AB=×2=1,依据勾股定理得到AM===,得到S平行四边形ABCD=BC•AM=3,依据平行四边形的性质得到AD∥BC,BO=DO,依据全等三角形的性质得到S△BOE=S△DOF,于是得到结论.【解答】解:作AM⊥BC于M,如图所示:则∠AMB=90°,∵∠ABC=60°,∴∠BAM=30°,∴BM=AB=×2=1,在Rt△ABM中,AB2=AM2+BM2,∴AM===,∴S平行四边形ABCD=BC•AM=3,∵四边形ABCD是平行四边形,∴AD∥BC,BO=DO,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴S△BOE=S△DOF,∴图中阴影部分的面积=▱ABCD的面积=,故答案为:.9.(海曙区校级开学)如图,在平行四边形ABCD中,点E,F分别是边AD,BC的中点.(1)求证:AF=CE;(2)若四边形AECF的周长为10,AF=3,AB=2,求平行四边形ABCD的周长.【分析】(1)依据平行四边形ABCD的对边平行得出AD∥BC,又AE=CF,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF为平行四边形,然后依据平行四边形的对边相等证得结论;(2)依据平行四边形的性质和平行四边形的周长公式即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CF,又∵点E,F分别是边AD,BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形,∴AF=CE;(2)解:∵四边形AECF的周长为10,AF=3,∴AE+CF=10﹣2×3=4,∵点E,F分别是边AD,BC的中点,∴AD+BC=2(AE+CF)=8,∵AB=2,∴平行四边形ABCD的周长=8+2×2=12.10.(海曙区校级期末)如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.【分析】(1)由题意易得AB=CD,AB∥CD,进而易证△AFE≌△DFC,则有CD=AE,然后问题可求证;(2)由(1)及题意易得AF=AE,则∠AFE=∠E=31°,然后依据三角形外角的性质可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,BC=AD,∴∠E=∠DCF,∵点F是AD中点,∴AF=DF,∵∠EFA=∠CFD,∴△AFE≌△DFC(AAS),∴CD=AE,∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD,∵BC=2AE,∴AE=AF,∵∠E=31°,∴∠AFE=∠E=31°,∴∠DAB=2∠E=62°.11.(桓台县期末)已知,如图在▱ABCD中,对角线AC和BD相交于点O,点E,F分别在OD,BO上,且OE=OF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)延长AE交CD于点G,延长CF交AB于点H.求证:AH=CG.【分析】(1)依据四边形ABCD是平行四边形,得AD=BC,AD∥BC,BO=DO,可证∠ADE=∠CBF,DE=BF,然后通过SAS即可证得△ADE≌△CBF;(2)证出四边形AHCG是平行四边形,由平行四边形的性质可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,BO=DO,∴∠ADE=∠CBF,∵OE=OF,∴DE=BF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAC=∠BCA,∵△ADE≌△CBF,∴∠DAE=∠BCF,∴∠EAO=∠FCO,∴AG∥HC,∵AH∥CG,∴四边形AHCG是平行四边形,∴AH=CG.考点三平行四边形的判定学问点睛:平行四边形的判定方法:两组对边分别平行的四边形是平行四边形。一组对边平行且相等的四边形是平行四边形。两组对边分别相等的四边形是平行四边形。对角线相互平分的四边形是平行四边形。两组对角分别相等的四边形是平行四边形。将平行四边形问题化为三角形问题来解决,这是问题化为三角形问题来解决,这是解决平行四边形问题的常用方法。在解决平行四边形的判定问题时,要结合题判定问题时,要结合题目条件选择恰当的方法进行证明。证明过程中的推理步骤要严谨,几何证明过程中的推理步骤要严谨,几何语言书写要规范。类题训练1.(泰山区期末)下列条件中,不能判定四边形是平行四边形的是()A.两组对边分别相等 B.一组对边平行,另一组对边相等 C.两组对角分别相等 D.一组对边平行且相等【分析】由平行四边形的判定定理分别对各个选项进行推断即可.【解答】解:A、∵两组对边分别相等的四边形是平行四边形,∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不愿定是平行四边形,∴选项B符合题意;C、∵两组对角分别相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行且相等的四边形是平行四边形,∴选项D不符合题意;故选:B.2.(任城区校级期末)在四边形ABCD中,AD∥BC,BC⊥CD,AD=6cm,BC=10cm,M是BC上一点,且BM=4,点E从A动身以1cm/s的速度向D运动,点F从点B动身以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为时,以A、M、E、F为顶点的四边形是平行四边形.【分析】分两种情形列出方程即可解决问题.【解答】解:①当点F在线段BM上,即0≤t<2,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=4﹣2t,解得t=,②当F在线段CM上,即2≤t≤5,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=2t﹣4,解得t=4,综上所述,t=4或s时,以A、M、E、F为顶点的四边形是平行四边形,故答案为:4s或s.3.(沂源县期末)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明:DE∥CB;(2)探究AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形,并说明理由.【分析】(1)首先连接CE,依据直角三角形的性质可得CE=AB=AE,再依据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°,证明DE∥CB;(2)当AC=AB时,证出DC∥BE,由平行四边形的判定可得出结论.【解答】(1)证明:连接CE.∵点E为Rt△ACB的斜边AB的中点,∴CE=AB=AE.∵△ACD是等边三角形,∴AD=CD.∴DE∥BC.在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE=30°.∵∠DCB=150°,∴∠EDC+∠DCB=180°.∴DE∥CB.(2)解:当AC=AB时,四边形DCBE是平行四边形.理由:∵AC=AB,∠ACB=90°,∴∠B=30°,∵∠DCB=150°,∴∠DCB+∠B=180°,∴DC∥BE,又∵DE∥BC,∴四边形DCBE是平行四边形.4.如图,在平行四边形ABCD中,M,N分别是AB,CD的中点,E,F是AC上两点,且AE=CF.求证:四边形MFNE是平行四边形.【分析】连接MN交AC于点O,可证得MN∥AD,可得O为AC和MN的中点,且可证明OE=OF,可证得结论.【解答】证明:连接MN交AC于点O,∵M、N分别是AB、CD的中点,∴DN=CD,AM=AB,又∵四边形ABCD为平行四边形,∴AB=CD,且AB∥CD,∴DN=AM,且DN∥AM,∴四边形AMND为平行四边形,∴MN∥AD,∴O为AC的中点,∴ON=OM=AD,OA=OC,∵AE=CF,∴OE=OF,∴四边形MFNE为平行四边形.考点四平行四边形的性质与判定的综合学问点睛:在解题的过程中,我们有时既须要用到平行四边形的判定定理,又须要用到平行四边形的性质定理,请留意正确运用,不要混淆.在进行有关计算时,还须要用到特殊三角形等其他几何学问以及数形结合的数学思想。在已知条件中,若出现两线段相互平分,则可构造平行四边形,利用平行四边形的性质解题.类题训练1.(莱芜区期末)▱ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF确定为平行四边形的是()A.BE=DF B.AF∥CE C.CE=AF D.∠DAF=∠BCE【分析】连接AC与BD相交于O,依据平行四边形的对角线相互平分可得OA=OC,OB=OD,再依据对角线相互平分的四边形是平行四边形,只要证明得到OE=OF即可,然后依据各选项的条件分析推断即可得解.【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;C、若CE=AF,则无法推断OE=OE,故本选项符合题意;D、由∠DAF=∠BCE,从而推出△DAF≌△BCE,然后得出∠DFA=∠BEC,∴∠AFE=∠CEF,∴AF∥CE,结合选项B可证明四边形AECF是平行四边形;故本选项不符合题意;故选:C.2.(任城区校级期末)如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个 B.8个 C.6个 D.4个【分析】依据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,判定即可求得答案.【解答】解:设EF与NH交于点O,∵在▱ABCD中,EF∥AD,HN∥AB,∴AD∥EF∥BC,AB∥NH∥CD,则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.3.(迁安市期末)如图,▱ABCD中,要在对角线BD上找点E、F,使四边形AECF为平行四边形,现有甲、乙、丙三种方案,则正确的方案是()甲:只须要满足BE=DF乙:只须要满足AE=CF丙:只须要满足AE∥CFA.甲、乙、丙都是 B.只有甲、丙才是 C.只有甲、乙才是 D.只有乙、丙才是【分析】只要证明△ABE≌△CDF,即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,甲:在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形,故甲正确;乙:由AE=CF,不能证明△ABE≌△CDF,不能判定四边形AECF为平行四边形,故乙不正确;丙:∵AE∥CF,∴∠AEF=∠CFE,∴∠AEB=∠CFD,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF为平行四边形,故丙正确;故选:B.4.(招远市期末)如图,在四边形ABCD中,AB∥CD,BC∥AD,且AD=DC,则下列说法:①四边形ABCD是平行四边形;②AB=BC;③AC⊥BD④AC平分∠BAD;⑤若AC=6,BD=8,则四边形ABCD的面积为24.其中正确的有()A.2个 B.3个 C.4个 D.5个【分析】先证四边形ABCD是平行四边形,再证平行四边形ABCD是菱形,即可得出结论.【解答】解:∵AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,故①正确;∵AD=DC,∴平行四边形ABCD是菱形,∴AB=BC,AC⊥BD,AC平分∠BAD,故②③④正确,∵AC=6,BD=8,∴菱形ABCD的面积=AC×BD=×6×8=24,故⑤正确;正确的个数有5个,故选:D.5.(莱阳市期末)如图,在▱ABCD中,延长AD到点E,延长CB到点F,使得DE=BF,连接EF,分别交CD,AB于点G,H,连接AG,CH.求证:四边形AGCH是平行四边形.【分析】依据平行四边形的性质得到∠EAH=∠FCG,AD∥BC,AD=BC,求得AE=CF,依据全等三角形的性质得到AH=CG,由平行四边形的判定定理即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴∠EAH=∠FCG,AD∥BC,AD=BC,∴∠E=∠F,∵AD=BC,DE=BF,∴AD+DE=BC+BF,即AE=CF,在△AEH与△CFG中,,∴△AEH≌△CFG(ASA),∴A=CG,∵AH∥CG,∴四边形AGCH是平行四边形.6.(任城区期末)如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC,过点O作EF⊥BD,交AD于点E,交BC于点F.(1)求证:四边形ABCD为平行四边形;(2)连接BE,若∠BAD=100°,∠DBF=2∠ABE,求∠ABE的度数.【分析】(1)证△AOD≌△COB(ASA),得AD=CB,再由AD∥BC,即可得出结论;(2)先依据线段垂直平分线的性质得BE=DE,则∠EBD=∠EDB,再证∠EBD=∠EDB=∠DBF=2x,然后由三角形内角和定理得出方程,解方程即可.【解答】(1)证明:∵AD∥BC,∴∠OAD=∠OCB,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴AD=CB,又∵AD∥BC,∴四边形ABCD为平行四边形;(2)解:设∠ABE=x,则∠DBF=2x,由(1)得:四边形ABCD为平行四边形,∴OB=OD,∵EF⊥BD,∴BE=DE,∴∠EBD=∠EDB,∵AD∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB=∠DBF=2x,∵∠BAD+∠ABE+∠EBD+∠EDB=180°,∴100°+x+2x+2x=180°,解得:x=16°,即∠ABE=16°.7.(阿城区期末)如图,平行四边形ABCD对角线交于点O,E、F分别是线段BO、OD上的点,并且BE=DF.(1)如图1,求证:四边形AECF是平行四边形;(2)如图2,若E、F分别是线段BO、OD上的中点,在不添加帮助线的条件下,干脆写出全部面积等于四边形AECF面积的三角形.【分析】(1)依据平行四边形的性质得出OA=OC,OB=OD,进而利用平行四边形的判定解答即可;(2)依据平行四边形的性质和面积公式解答即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形;(2)解:∵四边形ABCD是平行四边形,E、F分别是线段BO、OD上的中点,由(1)可得四边形AECF是平行四边形,∴△ABC的面积=△ACD的面积=△ABD的面积=△BCD的面积=四边形AECF面积的三角形.考点五三角形的中位线学问点睛:三角形的中位线平行于第三边,并且等于第三边的一半.当题目中出现多条线段的中点时,要联想到三角形的中位线.三角形的中位线定理既有两条线段之间的位置关系(平行),又有两条线段之间的数量关系(1∶2).三角形的中位线通常可以用来解决线段的位置关系与数量关系的相关问题,在实际运用中,有些问题虽然没有干脆给出中位线或看似与三角形中位线定理无关,但通过添加帮助线就可运用其解决相关问题.类题训练1.(晋江市期末)如图,在Rt△ABC中,∠C=90°,∠A=2∠B,AB=8,D、E分别是AB与AC的中点,则DE的长为()A.5 B.4 C.2 D.2【分析】依据直角三角形的性质求出AC,依据勾股定理求出BC,依据三角形中位线定理计算,得到答案.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵∠A=2∠B,∴∠B=30°,∴AC=AB=×8=4,由勾股定理得:BC===4;∵D、E分别是AB与AC的中点,∴DE是△ABC的中位线,∴DE=BC=2,故选:C.2.(渝中区校级期末)如图,在△ABC中,AB=CB=6,BD⊥AC于点D,F在BC上且BF=2,连接AF,E为AF的中点,连接DE,则DE的长为()A.1 B.2 C.3 D.4【分析】依据等腰三角形的性质得到AD=DC,依据三角形中位线定理解答即可.【解答】解:∵CB=6,BF=2,∴FC=6﹣2=4,∵BA=BC,BD⊥AC,∴AD=DC,∵AE=EF,∴DE是△AFC的中位线,∴DE=FC=×4=2,故选:B.3.(安溪县期末)如图,AB∥CD,AC、BD相交于P,E、F分别为AC、BD的中点,若AB=10,CD=6,则EF的长是()A.1 B.2 C.3 D.4【分析】连接CF并延长,交AB于G,证明△DFC≌△BFG,依据全等三角形的性质得到BG=CD=6,CF=FG,进而求出AG,依据三角形中位线定理定理计算即可.【解答】解:连接CF并延长,交AB于G,∵AB∥DC,∴∠D=∠B,∵F为BD的中点,∴DF=BF,在△DFC和△BFG中,,∴△DFC≌△BFG(ASA),∴BG=CD=6,CF=FG,∴AG=AB﹣BG=4,∵CF=FG,CE=EA,∴EF=AG=×4=2,故选:B.4.(宣化区期末)如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若DE=3,则AB=.【分析】延长AC交BD的延长线于点F,证明△ADB≌△ADF,依据全等三角形的性质得到BD=DF,AB=AF,依据三角形中位线定理解答即可.【解答】解:延长AC交BD的延长线于点F,在△ADB和△ADF中,,∴△ADB≌△ADF(ASA),∴BD=DF,AB=AF,∵DE∥AC,BD=DF,∴AF=2DE=2×3=6,∴AB=6,故答案为:6.5.(九龙坡区校级开学)如图,DE是△ABC的中位线,∠ABC的角平分线交DE于点F,AB=8,BC=12,则EF的长为.【分析】依据三角形中位线定理得到DE∥BC,DE=BC=6,BD=AD=AB=4,依据等腰三角形的判定定理求出DF,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC=6,BD=AD=AB=4,∴∠DFB=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠DFB=∠DBF,∴DF=BD=4,∴EF=DE﹣DF=6﹣4=2,故答案为:2.6.(开福区校级开学)如图,在△ABC中,点D、E、F分别是各边的中点,若△ABC的面积为16cm2,则△DEF的面积是cm2.【分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人2024年度在线教育服务合同5篇
- 海底两万里观后感与探讨
- 16大家一起来合作 (说课稿)-部编版道德与法治一年级下册
- 3 古诗词三首 西江月·夜行黄沙道中(说课稿)-2024-2025学年统编版语文六年级上册
- 上饶卫生学校二期建设项目(2024版)
- 会员协议书范本
- 保温系统施工的合同范本
- 专用化学品销售协议示例(2024年发布)版B版
- 专用设备买卖协议细则(2024版)版B版
- 专业鞋品采购协议模板2024版A版
- 社区老年人项目计划书
- 《1.我又长大了一岁》教学课件∣泰山版
- 断裂力学-1绪论课件
- 深基坑工程验收表
- 医学交流课件:RCT的基本概念及原则(PPT 37页)
- SLZ 549-2012 用水审计技术导则(试行)
- qes三体系审核培训ppt课件
- CASS文字编缉
- 农文旅一体化项目可行性研究报告写作范文
- JJF 1406-2013 地面激光扫描仪校准规范(原版-高清)
- 转炉系统机械设备概述
评论
0/150
提交评论