扬州市达标名校2023-2024学年中考数学最后冲刺浓缩卷含解析_第1页
扬州市达标名校2023-2024学年中考数学最后冲刺浓缩卷含解析_第2页
扬州市达标名校2023-2024学年中考数学最后冲刺浓缩卷含解析_第3页
扬州市达标名校2023-2024学年中考数学最后冲刺浓缩卷含解析_第4页
扬州市达标名校2023-2024学年中考数学最后冲刺浓缩卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

扬州市达标名校2023-2024学年中考数学最后冲刺浓缩精华卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是()A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣12.如果菱形的一边长是8,那么它的周长是()A.16 B.32 C.163 D.3233.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且.图象上有一点在轴下方,则下列判断正确的是()A. B. C. D.4.=()A.±4 B.4 C.±2 D.25.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.:1 B.2: C.2:1 D.29:146.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是()A. B. C. D.7.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米8.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()A. B. C. D.9.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为()A. B. C. D.10.两个一次函数,,它们在同一直角坐标系中的图象大致是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式2x2+4x+2=__________.12.如图,当半径为30cm的转动轮转过120角时,传送带上的物体A平移的距离为______cm.13.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.14.如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD交直线OA于点E,若∠B=30°,则线段AE的长为.15.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.16.分解因式:m2n﹣2mn+n=.三、解答题(共8题,共72分)17.(8分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.(参考数据:sin15°=,cos15°=,tan15°=2﹣)(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;(2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;(3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.18.(8分)分式化简:(a-)÷19.(8分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)20.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?21.(8分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=2,AC=2,求AD的长.22.(10分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p=t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?23.(12分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24.已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣).(1)求这个二次函数的解析式;(2)点B(2,﹣2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据题意可知x=-1,

平均数=(-6-1-1-1+2+1)÷6=-1,

∵数据-1出现两次最多,

∴众数为-1,

极差=1-(-6)=2,

方差=[(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.

故选A.2、B【解析】

根据菱形的四边相等,可得周长【详解】菱形的四边相等∴菱形的周长=4×8=32故选B.【点睛】本题考查了菱形的性质,并灵活掌握及运用菱形的性质3、D【解析】

根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.4、B【解析】

表示16的算术平方根,为正数,再根据二次根式的性质化简.【详解】解:,故选B.【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.5、A【解析】试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.故选A.考点:反比例函数系数k的几何意义6、A【解析】

根据左视图的概念得出各选项几何体的左视图即可判断.【详解】解:A选项几何体的左视图为;

B选项几何体的左视图为;

C选项几何体的左视图为;

D选项几何体的左视图为;

故选:A.【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.7、C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.8、B【解析】解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B.9、B【解析】

连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.【详解】解:连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的长==;故选B.【点睛】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.10、B【解析】

根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解.【详解】解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,

所以,a、b异号,

所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,

B选项符合,

D选项,a、b都经过第二、四象限,

所以,两直线都与y轴负半轴相交,不符合.

故选:B.【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k≠0),k>0时,一次函数图象经过第一三象限,k<0时,一次函数图象经过第二四象限,b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.二、填空题(本大题共6个小题,每小题3分,共18分)11、2(x+1)2。【解析】试题解析:原式=2(x2+2x+1)=2(x+1)2.考点:提公因式法与公式法的综合运用.12、20π【解析】解:=20πcm.故答案为20πcm.13、1【解析】

本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.14、【解析】

要求AE的长,只要求出OA和OE的长即可,要求OA的长可以根据∠B=30°和OB的长求得,OE可以根据∠OCE和OC的长求得.【详解】解:连接OD,如图所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【点晴】切线的性质15、2或【解析】

分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;(2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.【详解】解:(1)当时,∵垂直平分,.(2)当时,过点A作于点,在与中,.故答案为或.【点睛】本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.16、n(m﹣1)1.【解析】

先提取公因式n后,再利用完全平方公式分解即可【详解】m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.故答案为n(m﹣1)1.三、解答题(共8题,共72分)17、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析【解析】

(1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;(2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;(3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.【详解】解:(1)EF∥BD.证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,∴DE=BF,又∵DE∥BF,∴四边形DBFE是平行四边形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能为等边三角形.若△AEM是等边三角形,则∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8,即当DE=16﹣8时,△AEM是等边三角形;(3)△ANF的面积不变.设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,∵CD∥AB,∴△DEN∽△BNA,∴=,∴,∴PN=,∴S△ANF=AF×PN=×(x+8)×=32,即△ANF的面积不变.【点睛】本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出结论.18、a-b【解析】

利用分式的基本性质化简即可.【详解】===.【点睛】此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.19、(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(75﹣25)海里.【解析】

(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长;(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长.【详解】解:(1)过点B作BH⊥CA交CA的延长线于点H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×=75(海里).答:B点到直线CA的距离是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH==,∴AH=25,∴AD=DH﹣AH=(75﹣25)(海里).答:执法船从A到D航行了(75﹣25)海里.【点睛】本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题.能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键.20、();()此时每天利润为元.【解析】试题分析:(1)根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:()设,将,和,代入,得:,解得:,∴;()将代入()中函数表达式得:,∴利润(元),答:此时每天利润为元.21、(1)证明见解析;(2)AD=2.【解析】

(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.22、(1)y=﹣2t+200(1≤t≤80,t为整数);(2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.【解析】

(1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;

(2)设日销售利润为w,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;

(3)求出w=2400时t的值,结合函数图象即可得出答案;【详解】(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤t≤80,t为整数);(2)设日销售利润为w,则w=(p﹣6)y,当1≤t≤80时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,∴当t=30时,w最大=2450;∴第30天的日销售利润最大,最大利润为2450元.(3)由(2)得:当1≤t≤80时,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论