版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆兵团八师一四三团一中学2024年中考数学适应性模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.a3•a2=a6 B.a﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+42.多项式4a﹣a3分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)23.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)4.反比例函数是y=的图象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限5.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是()A.120° B.135° C.150° D.165°6.不等式组1-x≤0,3x-6<0A. B. C. D.7.如果,那么代数式的值为()A.1 B.2 C.3 D.48.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是()①,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)A.1个 B.2个 C.3个 D.4个9.已知抛物线y=(x﹣)(x﹣)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是()A. B. C. D.10.将一把直尺与一块直角三角板如图放置,如果,那么的度数为().A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.12.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+2.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,点A为函数y=(x>0)图象上一点,连接OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.14.在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为______.15.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.16.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为_____.三、解答题(共8题,共72分)17.(8分)如图,在△ABC中,∠C=90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.18.(8分)(1)计算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.19.(8分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BE=DF.20.(8分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.21.(8分)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.22.(10分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)请用t分别表示A、B的路程sA、sB;(2)在A出发后几小时,两人相距15km?23.(12分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上请根据阅读材料,解决下列问题:如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.(I)旋转中心是点,旋转了(度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.24.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、(a+2)(a﹣2)=a2﹣4,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.2、B【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.【详解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故选:B.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.3、D【解析】
根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.4、B【解析】
解:∵反比例函数是y=中,k=2>0,
∴此函数图象的两个分支分别位于一、三象限.
故选B.5、C【解析】
这个扇形的圆心角的度数为n°,根据弧长公式得到20π=,然后解方程即可.【详解】解:设这个扇形的圆心角的度数为n°,根据题意得20π=,解得n=150,即这个扇形的圆心角为150°.故选C.【点睛】本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径).6、D【解析】试题分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.7、A【解析】
先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.【详解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故选:A.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.8、C【解析】
①如图,由平行线等分线段定理(或分线段成比例定理)易得:;②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G为AC中点,所以,S△AGB=S△BGC=,从而得结论;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.【详解】解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正确;②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G为AC中点,∴S△ABG=S△BCG=,∴S△ABC=1,故②正确;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正确;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故④错误;故选C.【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.9、C【解析】
代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.【详解】解:当y=0时,有(x-)(x-)=0,解得:x1=,x2=,∴MaNa=-,∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.故选C.【点睛】本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键.10、D【解析】
根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、①②③④.【解析】
由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;
证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CBFG,②正确;
由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;
证出△ACD∽△FEQ,得出对应边成比例,得出④正确.【详解】解:∵四边形ADEF为正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正确;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,FG⊥CA,
∴FG∥BC,
∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,②正确;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正确;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴AD•FE=AD2=FQ•AC,④正确;
故答案为①②③④.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.12、①②④【解析】
①根据ASA可证△BOE≌△COF,根据全等三角形的性质得到BE=CF,根据等弦对等弧得到,可以判断①;
②根据SAS可证△BOG≌△COH,根据全等三角形的性质得到∠GOH=90°,OG=OH,根据等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判断②;
③通过证明△HOM≌△GON,可得四边形OGBH的面积始终等于正方形ONBM的面积,可以判断③;
④根据△BOG≌△COH可知BG=CH,则BG+BH=BC=4,设BG=x,则BH=4-x,根据勾股定理得到GH==,可以求得其最小值,可以判断④.【详解】解:①如图所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE与△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正确;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正确.③如图所示,
∵△HOM≌△GON,
∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
设BG=x,则BH=4-x,
则GH==,
∴其最小值为4+2,④正确.
故答案为:①②④【点睛】考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,等弦对等弧,等腰直角三角形的判定,勾股定理,面积的计算,综合性较强.13、6.【解析】
作辅助线,根据反比例函数关系式得:S△AOD=,S△BOE=,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.【详解】如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵点A为函数y=(x>0)的图象上一点,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案为6.14、cm【解析】
利用已知得出底面圆的半径为:1cm,周长为2πcm,进而得出母线长,即可得出答案.【详解】∵半径为1cm的圆形,∴底面圆的半径为:1cm,周长为2πcm,扇形弧长为:2π=,∴R=4,即母线为4cm,∴圆锥的高为:(cm).故答案为cm.【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.15、m>1【解析】∵反比例函数的图象在其每个象限内,y随x的增大而减小,∴>0,解得:m>1,故答案为m>1.16、【解析】
如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.【详解】解:∵四边形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如图,过点A′作A′D⊥x轴与点D;设A′D=a,OD=b;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由题意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面积公式得:xy+2××2×2=(x+2)×(y+2)②;联立①②并解得:x=,y=.故答案为(−,)【点睛】该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.三、解答题(共8题,共72分)17、证明见解析【解析】试题分析:先根据垂直的定义得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根据有两个角相等的两三角形相似即可得出结论.试题解析:解:∵ED⊥AB,∴∠EDB=90°.∵∠C=90°,∴∠EDB=∠C.∵∠B=∠B,∴∽.点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.18、(1)3;(2)x﹣y,1.【解析】
(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【详解】(1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018=3×+2-+3-1-1,=+2−+3-1-1,=3;(2)(x﹣)÷,=,==x-y,当x=,y=-1时,原式=−+1=1.【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.19、(1)证明:∵ABCD是平行四边形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解析】证明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………4分∵AE⊥BDCF⊥BD∴∠AEB=∠CFD=900……………………5分∵AB=CD∴△ABE≌△CDF…………6分∴BE=DF20、(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.【解析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.考点:一次函数的应用.21、详见解析【解析】
由等边三角形的性质得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD,证明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出结论.【详解】证明:∵△ABC,△DEB都是等边三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.22、(1)sA=45t﹣45,sB=20t;(2)在A出发后小时或小时,两人相距15km.【解析】
(1)根据函数图象中的数据可以分别求得s与t的函数关系式;(2)根据(1)中的函数解析式可以解答本题.【详解】解:(1)设sA与t的函数关系式为sA=kt+b,,得,即sA与t的函数关系式为sA=45t﹣45,设sB与t的函数关系式为sB=at,60=3a,得a=20,即sB与t的函数关系式为sB=20t;(2)|45t﹣45﹣20t|=15,解得,t1=,t2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级班主任教师的工作总结
- 会计求职信集锦八篇
- 幼儿五一劳动节发言稿
- 手切割伤的护理措施
- 师德师风建设工作个人总结
- 班周工作计划汇编9篇
- 软件工程师辞职报告范文集合八篇
- 2021年贫困生申请书怎么写范文
- 爱岗敬业演讲稿范文集合五篇
- 体现个人先进的事迹材料
- 成人重症患者人工气道湿化护理专家共识 解读
- 机器学习(山东联盟)智慧树知到期末考试答案章节答案2024年山东财经大学
- 商业伦理与企业社会责任(山东财经大学)智慧树知到期末考试答案章节答案2024年山东财经大学
- 2024年辅警招聘考试试题库及完整答案(全优)
- 美国史智慧树知到期末考试答案2024年
- 2024年江苏省普通高中学业水平测试小高考生物、地理、历史、政治试卷及答案(综合版)
- 甘蔗制糖简介
- 三秦出版社五年级上册综合实践教案
- 屋顶分布式光伏项目安全文明施工控制措施
- 水泥保证供应实施方案及服务承诺书
- 2022机要密码工作总结机要室工作总结.doc
评论
0/150
提交评论