福建省泉州德化县联考2025届九上数学期末联考试题含解析_第1页
福建省泉州德化县联考2025届九上数学期末联考试题含解析_第2页
福建省泉州德化县联考2025届九上数学期末联考试题含解析_第3页
福建省泉州德化县联考2025届九上数学期末联考试题含解析_第4页
福建省泉州德化县联考2025届九上数学期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州德化县联考2025届九上数学期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,用尺规作图作的平分线,第一步是以为圆心,任意长为半径画弧,分别交于点;第二步是分别以为圆心,以大于长为半径画弧,两圆弧交于点,连接,那么为所作,则说明的依据是()A. B. C. D.2.关于x的一元二次方程中有一根是1,另一根为n,则m与n的值分别是()A.m=2,n=3 B.m=2,n=-3 C.m=2,n=2 D.m=2,n=-23.函数y=ax+b和y=ax2+bx+c(a≠0)在同一个坐标系中的图象可能为()A. B.C. D.4.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称5.二次函数y=+2的顶点是()A.(1,2) B.(1,−2) C.(−1,2) D.(−1,−2)6.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠07.在数轴上表示不等式﹣2≤x<4,正确的是()A. B.C. D.8.抛物线y=x2+6x+9与x轴交点的个数是()A.0 B.1 C.2 D.39.2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是().A. B. C. D.10.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5) B.(﹣3,5) C.(3,﹣5) D.(﹣3,﹣5)11.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28° B.32° C.42° D.52°12.一块矩形菜地的面积是120平方米,如果它的长减少2米,菜地就变成正方形,则原菜地的长是()A.10 B.12 C.13 D.14二、填空题(每题4分,共24分)13.如图,已知菱形的面积为,的长为,则的长为__________.14.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线;乙说:与轴的两个交点的距离为6;丙说:顶点与轴的交点围成的三角形面积等于9,则这条抛物线解析式的顶点式是______.15.某“中学生暑期环保小组”的同学,随机调查了“金沙绿岛”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区500户家庭一周内需要环保方便袋__________只.16.一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是_____.17.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC的长为_____.18.若关于的方程和的解完全相同,则的值为________.三、解答题(共78分)19.(8分)解方程:(1)x1﹣1x﹣3=0;(1)3x1﹣6x+1=1.20.(8分)解不等式组:21.(8分)某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?22.(10分)已知,如图,在平行四边形ABCD中,M是BC边的中点,E是边BA延长线上的一点,连接EM,分别交线段AD于点F、AC于点G.(1)证明:∽(2)求证:;23.(10分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.24.(10分)如图,抛物线经过点,请解答下列问题:求抛物线的解析式;抛物线的顶点为点,对称轴与轴交于点,连接,求的长.点在抛物线的对称轴上运动,是否存在点,使的面积为,如果存在,直接写出点的坐标;如果不存在,请说明理由.25.(12分)甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.26.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自年起逐月增加,据统计该商城月份销售自行车辆,月份销售了辆.(1)求这个运动商城这两个月的月平均增长率是多少?(2)若该商城前个月的自行车销量的月平均增长率相同,问该商城月份卖出多少辆自行车?

参考答案一、选择题(每题4分,共48分)1、A【分析】根据作图步骤进行分析即可解答;【详解】解:∵第一步是以为圆心,任意长为半径画弧,分别交于点∴AE=AF∵二步是分别以为圆心,以大于长为半径画弧,两圆弧交于点,连接,∴CE=DE,AD=AD∴根据SSS可以判定△AFD≌△AED∴(全等三角形,对应角相等)故答案为A.【点睛】本题考查的是用尺规作图做角平分线,明确作图步骤的依据是解答本题的关键.2、C【分析】将根是1代入一元二次方程,即可求出m的值,再解一元二次方程,可求出两个根,即可求出n的值.【详解】解:∵将1代入方程,得到:1-3+m=0,m=2∴∴解得x1=1,x2=2∴n=2故选C.【点睛】本题主要考查了一元二次方程,熟练解满足一元二次方程以及解一元二次方程是解决本题的关键.3、D【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数ax2+bx+c的图象相比较看是否一致.【详解】解:A.由一次函数的图象可知a>0,b>0,由抛物线图象可知,开口向上,a>0,对称轴x=﹣>0,b<0;两者相矛盾,错误;B.由一次函数的图象可知a>0,b<0,由抛物线图象可知a<0,两者相矛盾,错误;C.由一次函数的图象可知a<0,b>0,由抛物线图象可知a>0,两者相矛盾,错误;D.由一次函数的图象可知a>0,b<0,由抛物线图象可知a>0,对称轴x=﹣>0,b<0;正确.故选D.【点睛】解决此类问题步骤一般为:(1)根据图象的特点判断a取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求.4、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.5、C【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=+2的顶点坐标.【详解】解:∵二次函数y=+2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.6、D【解析】根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.【详解】∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范围为k<1且k≠1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.7、A【分析】根据不等式的解集在数轴上表示出来即可.【详解】解:在数轴上表示不等式﹣2≤x<4的解集为:故选:A.【点睛】此题主要考查不等式解集的表示,解题的关键是熟知不等式解集的表示方法.8、B【分析】根据题意,求出b2﹣4ac与0的大小关系即可判断.【详解】∵b2﹣4ac=36﹣4×1×9=0∴二次函数y=x2+6x+9的图象与x轴有一个交点.故选:B.【点睛】此题考查的是求二次函数与x轴的交点个数,掌握二次函数与x轴的交点个数和b2﹣4ac的符号关系是解决此题的关键.9、D【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.【详解】解:如图所示:一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:,故选D.【点睛】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.10、B【解析】解:抛物线y=2(x+3)2+5的顶点坐标是(﹣3,5),故选B.11、C【详解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故选C.12、B【分析】设原菜地的长为,根据正方形的性质可得原矩形菜地的宽,再根据矩形的面积公式列出方程求解即可.【详解】设原菜地的长为,则原矩形菜地的宽由题意得:解得:,(不合题意,舍去)故选:B【点睛】本题考查了一元二次方程的实际应用,依据题意正确建立方程是解题关键.二、填空题(每题4分,共24分)13、3【分析】根据菱形面积公式求得.【详解】解:【点睛】本题主要考查了菱形的对角线互相垂直,菱形的面积公式.14、,【分析】根据对称轴是直线x=2,与x轴的两个交点距离为6,可求出与x轴的两个交点的坐标为(-1,0),(5,0);再根据顶点与x轴的交点围成的三角形面积等于9,可得顶点的纵坐标为±1,然后利用顶点式求得抛物线的解析式即可.【详解】解:∵对称轴是直线x=2,与x轴的两个交点距离为6,∴抛物线与x轴的两个交点的坐标为(-1,0),(5,0),设顶点坐标为(2,y),∵顶点与x轴的交点围成的三角形面积等于9,∴,∴y=1或y=-1,∴顶点坐标为(2,1)或(2,-1),设函数解析式为y=a(x-2)2+1或y=a(x-2)2-1;把点(5,0)代入y=a(x-2)2+1得a=-;把点(5,0)代入y=a(x-2)2-1得a=;∴满足上述全部条件的一条抛物线的解析式为y=-(x-2)2+1或y=(x-2)2-1.故答案为:,.【点睛】此题考查了二次函数的图像与性质,待定系数法求函数解析式.解题的关键是理解题意,采用待定系数法求解析式,若给了顶点,注意采用顶点式简单.15、3500【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数500即可解答.【详解】由10户家庭一周内使用环保方便袋的数量可知平均每户一周使用的环保方便袋的数量为则该小区500户家庭一周内需要环保方便袋约为,故答案为3500.【点睛】本题考查的是样本平均数的求法与意义,能够知道平均数的计算方法是解题的关键.16、1【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【详解】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:26故答案为13【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.17、【分析】根据相似多边形的性质列出比例式,计算即可.【详解】∵矩形ABCD与矩形EABF相似,∴=,即=,解得,AD=,∴矩形ABCD的面积=AB•AD=,故答案为:.【点睛】本题考查了相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.18、1【分析】先分解因式,根据两方程的解相同即可得出答案.【详解】解:,,∵关于x的方程和的解完全相同,∴a=1,故答案为:1.【点睛】本题考查了解一元二次方程,能正确用因式分解法解方程是解此题的关键.三、解答题(共78分)19、(1)x1=3,x1=﹣1;(1)x1=,x1=【分析】(1)利用因式分解法求解可得;

(1)整理为一般式,再利用公式法求解可得.【详解】解:(1)原方程可以变形为(x﹣3)(x+1)=0,∴x﹣3=0,x+1=0,∴x1=3,x1=﹣1;(1)方程整理为一般式为3x1﹣6x﹣1=0,∵a=3,b=﹣6,c=﹣1,∴=36﹣4×3×(﹣1)=48>0,则,即.【点睛】本题考查了解一元二次方程,应熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20、【分析】由题意分别求出各不等式的解集,再求出其公共解集即可得到不等式组的解集.【详解】解:,由①得,由②得,故不等式组的解集为:.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、(1)鸡场的宽(BC)为6m,则长(AB)为1m;(2)不能.【分析】(1)可设鸡场的宽(BC)为xm,则长(AB)为(33-3x)m,由矩形的面积可列出关于x的一元二次方程,求出符合题意的解即可;(2)将(1)中矩形的面积换成100,求方程的解即可,若有符合题意的解,则能实现,反之则不能.【详解】(1)设鸡场的宽(BC)为xm,则长(AB)为(33-3x)m,根据题意,得.解得,(不符合题意,舍去).33-3x=33-3×6=1.答:鸡场的宽(BC)为6m,则长(AB)为1m.(2)设鸡场的宽(BC)为xm,则长(AB)为(33-3x)m,根据题意,得,整理得所以该方程无解,这一想法不能实现.【点睛】本题考查了一元二次方程的应用,正确理解题意列出方程是解题的关键.22、(1)详见解析;(2)详见解析.【分析】(1)利用平行线的性质及对顶角相等即可证明∽;(2)由相似三角形的性质可知,由AD∥BC可知,通过等量代换即可证明结论.【详解】(1)证明:∥∽(2)证明:∵∽∵AD∥BC,∴又∵CM=BM,【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及性质是解题的关键.23、(1)见解析;(2)+【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24、(1)y=-x2+2x+3;(2)2;(3)存在点F,点F(1,2)或(1,-2)【分析】(1)利用待定系数法即可求出结论;(2)先求出顶点D的坐标,然后分别求出BE和DE的长,利用勾股定理即可求出结论;(3)先求出BC的长,然后根据三角形的面积公式即可求出点F的纵坐标,从而求出结论.【详解】解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),∴将A(0,3),B(-1,0)代入得:,解得:则抛物线解析式为y=-x2+2x+3;(2)y=-x2+2x+3=-(x-1)2+4由D为抛物线顶点,得到D(1,4),∵

对称轴与

x

轴交于点E

,∴

DE=4,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论