版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省宝鸡市陇县数学九上期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A. B. C. D.2.在中,,,则()A.60° B.90° C.120° D.135°3.平面直角坐标系内点关于点的对称点坐标是()A.(-2, -1) B.(-3, -1) C.(-1, -2) D.(-1, -3)4.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.关于x的一元二次方程有实数根,则整数a的最大值是()A.2 B.1 C.0 D.-16.已知关于的方程(1)(2)(3)(4),其中一元二次方程的个数为()个.A.1 B.2 C.3 D.47.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于()A.2∶5 B.4∶9 C.4∶25 D.2∶38.如图1,图2是甲、乙两位同学设置的“数值转换机”的示意图,若输入的,则输出的结果分别为()A.9,23 B.23,9 C.9,29 D.29,99.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,则cosB的值为()A. B. C. D.10.如图,中,,则的值为()A. B. C. D.11.如图,截的三条边所得的弦长相等,若,则的度数为()A. B. C. D.12.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.+x=2 C.x2+2x=x2﹣1 D.3x2+1=2x+2二、填空题(每题4分,共24分)13.计算sin45°的值等于__________14.在英语句子“Wishyousuccess”(祝你成功)中任选一个字母,这个字母为“s”的概率是.15.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.16.若a,b是一元二次方程的两根,则________.17.已知a=3+2,b=3-2,则a2b+ab2=_________.18.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).三、解答题(共78分)19.(8分)解方程:;20.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有多少名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.21.(8分)已知:如图,在△ABC中,AD是∠BAC的平分线,∠ADE=∠B.求证:(1)△ABD∽△ADE;(2)AD2=AE•AB.22.(10分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.23.(10分)教育部基础教育司负责人解读“2020新中考”时强调要注重学生分析与解决问题的能力,要增强学生的创新精神和综合素质.王老师想尝试改变教学方法,将以往教会学生做题改为引导学生会学习.于是她在菱形的学习中,引导同学们解决菱形中的一个问题时,采用了以下过程(请解决王老师提出的问题):先出示问题(1):如图1,在等边三角形中,为上一点,为上一点,如果,连接、,、相交于点,求的度数.通过学习,王老师请同学们说说自己的收获.小明说发现一个结论:在这个等边三角形中,只要满足,则的度数就是一个定值,不会发生改变.紧接着王老师出示了问题(2):如图2,在菱形中,,为上一点,为上一点,,连接、,、相交于点,如果,,求出菱形的边长.问题(3):通过以上的学习请写出你得到的启示(一条即可).24.(10分)如图,是的直径,是弦,是弧的中点,过点作的切线交的延长线于点,过点作于点,交于点.(1)求证:;(2)若,,求的长.25.(12分)某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为元()时,每周的销售量(件)满足关系式:.(1)若每周的利润为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?(2)当时,求每周获得利润的取值范围.26.如图,内接于,,是的弦,与相交于点,平分,过点作,分别交,的延长线于点、,连接.(1)求证:是的切线;(2)求证:.
参考答案一、选择题(每题4分,共48分)1、C【解析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【详解】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1,交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=20°.∵∠OP1B=20°,∴OP1∥AC.∵AO=OB,∴P1C=P1B,∴OP1AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是2.故选C.【点睛】本题考查了切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.2、C【分析】首先根据特殊角的三角函数值求出∠C,∠A的度数,然后根据三角形的内角和公式求出∠B的大小.【详解】∵,,∴∠C=30°,∠A=30°,∴∠B=180°﹣30°﹣30°=120°.故选C.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及三角形的内角和公式.3、B【解析】通过画图和中心对称的性质求解.【详解】解:如图,点P(1,1)关于点Q(−1,0)的对称点坐标为(−3,−1).故选B.【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.4、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.此图案既不是轴对称图形,也不是中心对称图形;
B.此图案既不是轴对称图形,也不是中心对称图形;
C.此图案既是轴对称图形,又是中心对称图形;
D.此图案仅是轴对称图形;
故选:C.【点睛】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5、C【分析】根据一元二次方程的根的判别式可得答案.【详解】解:∵关于x的一元二次方程有实数根,∴.即a的取值范围是且.∴整数a的最大值为0.故选C.【点睛】本题考查了一元二次方程,熟练掌握根的判别式与根的关系是解题关键.6、C【分析】根据一元二次方程的定义逐项判断即可.【详解】解:(1)ax2+x+1=0中a可能为0,故不是一元二次方程;(2)符合一元二次方程的定义,故是一元二次方程;(3),去括号合并后为,是一元二次方程;(4)x2=0,符合一元二次方程的定义,是一元二次方程;所以是一元二次方程的有三个,
故选:C.【点睛】本题主要考查一元二次方程的定义,即只含有一个未知数且未知数的次数为2的整式方程,注意如果是字母系数的方程必须满足二次项的系数不等于0才可以.7、C【分析】由四边形ABCD是平行四边形,可得AD∥BE,由平行得相似,即△BEF∽△DAF,再利用相似比解答本题.【详解】∵,
∴,∵四边形是平行四边形,
∴,∥,
∴,,
∴,,故选:C.【点睛】本题考查了相似三角形的判定与性质.正确运用相似三角形的相似比是解题的关键.8、D【分析】根据题意分别把m=-2代入甲、乙两位同学设置的“数值转换机”求值即可.【详解】解:甲的“数值转换机”:当时,(-2)2+52=4+25=29,乙的“数值转换机”:当时,[(-2)+5]2=32=9,故选D.【点睛】本题考查了求代数式的值.解题关键是根据数值转换机的图示分清运算顺序.9、B【详解】解:在Rt△ABC中,∠C=90°,AC=3,AB=5,由勾股定理,得:BC===1.cosB==,故选B.【点睛】本题考查锐角三角函数的定义.10、D【解析】根据相似三角形的判定和性质,即可得到答案.【详解】解:∵,∴∽,∴;故选:D.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.11、C【分析】先利用截的三条边所得的弦长相等,得出即是的内心,从而∠1=∠2,∠3=∠4,进一步求出的度数.【详解】解:过点分别作、、,垂足分别为、、,连接、、、、、、、,如图:∵,∴∴∴点是三条角平分线的交点,即三角形的内心∴,∵∴∴.故选:C【点睛】本题考查的是三角形的内心、角平分线的性质、全等三角形的判定和性质以及三角形内角和定理,比较简单.12、D【解析】试题分析:一元二次方程的一般式为:a+bx+c=0(a、b、c为常数,且a≠0),根据定义可得:A选项中a有可能为0,B选项中含有分式,C选项中经过化简后不含二次项,D为一元二次方程.考点:一元二次方程的定义二、填空题(每题4分,共24分)13、【分析】根据特殊锐角的三角函数值求解.【详解】解:,故答案为:.【点睛】本题主要考查特殊锐角的三角函数值,解题的关键是熟记特殊锐角的三角函数值.14、【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.15、4π【解析】根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【详解】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长=,故答案为4π.【点睛】本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.16、【分析】将通分变形为,然后利用根与系数的关系即可求解.【详解】∵a、b是一元二次方程的两根∴,∴故答案为:.【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握,是解题的关键.17、6【解析】仔细观察题目,先对待求式提取公因式化简得ab(a+b),将a=3+2,b=3-2,代入运算即可.【详解】解:待求式提取公因式,得将已知代入,得故答案为6.【点睛】考查代数式求值,熟练掌握提取公因式法是解题的关键.18、【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.解:如图所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵两次测量的影长相差8米,∴=8,∴x=4,故答案为4.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.三、解答题(共78分)19、1+、1-【详解】X=1+或者x=1-20、(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【详解】(1)参与问卷调查的学生人数为(8+2)÷10%=100人,(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)证明见解析;(2)证明见解析.【分析】(1)由AD是的平分线可得,又,则结论得证;(2)由(1)可得出结论.【详解】证明:(1)是的平分线,,.∽;(2)∽,.【点睛】此题主要考查了相似三角形的判定与性质,证明∽是解题的关键.22、(1);(2)见解析,.【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一张是科技社团D的结果数,然后根据概率公式求解.【详解】(1)小明从中随机抽取一张卡片是足球社团B的概率=;(2)列表如下:ABCDA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,所以小明两次抽取的卡片中有一张是科技社团D的概率为.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率23、(1);(2);(3)答案不唯一,合理即可【解析】问题(1)根据是等边三角形证明,得出,再根据三角形外角性质即可得证;问题(2)作交于点,根据四边形是菱形得出,在中利用三角函数即可求得,,最后根据勾股定理得出答案.问题(3)从个人的积累和心得写一句话即可.【详解】问题(1)∵是等边三角形,∴,.∵,∴,∴.∵,∴,问题(2)如图,作交于点,∵四边形是菱形,∴,,∴是等边三角形,∴.由(1)可知,在中,,即,∴,,即,∴.在中,由勾股定理可得,∴,∴,∴菱形的边长为.问题(3)如平时应该注意基本图形的积累,在学习过程中做个有心人等,言之有理即可.【点睛】本题考查了菱形的性质、等边三角形的判定、勾股定理及三角函数,综合性比较强,需要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国汽车后行业经营策略及未来发展规划分析报告
- 2024-2030年中国汽保行业发展状况分析及投资经营模式研究报告版
- 2024年数控机床:数控车床项目申请报告
- 2022年大学生物工程专业大学物理二期中考试试卷A卷-附解析
- 2022-2023学年福建省晋江市潘径中学数学九上期末经典试题含解析
- 人教版四年级上册数学第四单元《三位数乘两位数》测试卷【有一套】
- 2022年大学天文学专业大学物理下册期中考试试卷B卷-附解析
- 2022年大学林业工程专业大学物理下册期末考试试题D卷-附解析
- 2022年大学生物工程专业大学物理二开学考试试题-附解析
- 高科技温室建设项目实施方案
- 2024医保练兵理论知识考试题库(浓缩500题)
- 生涯职业发展展示
- 三重一大培训课件
- 【增加多场景】员工使用公司车辆协议
- 2024年度2024行政复议法培训
- 车辆托运合同
- 2023土的分散性判别试验规程
- 牧原招聘测评试题
- 29.4常见肿瘤标志物讲解
- 大学生职业生涯规划环境设计 (模板)
- 铸牢中华民族共同体意识主题班会教案
评论
0/150
提交评论