版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市延庆区2025届数学九上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是2cm,则这个正六边形的周长是()A.12 B.6 C.36 D.122.如图,矩形的边在x轴上,在轴上,点,把矩形绕点逆时针旋转,使点恰好落在边上的处,则点的对应点的坐标为()A. B. C. D.3.如图,等腰与等腰是以点为位似中心的位似图形,位似比为,则点的坐标是()A. B. C. D.4.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20° B.30° C.40° D.60°5.如图,在中,所对的圆周角,若为上一点,,则的度数为()A.30° B.45° C.55° D.60°6.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A. B. C. D.7.如图,PA,PB切⊙O于点A,B,点C是⊙O上一点,且∠P=36°,则∠ACB=()A.54° B.72° C.108° D.144°8.已知菱形的周长为40cm,两对角线长度比为3:4,则对角线长分别为()A.12cm.16cm B.6cm,8cm C.3cm,4cm D.24cm,32cm9.下面的函数是反比例函数的是()A. B. C. D.10.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A. B.C. D.11.下列数是无理数的是()A. B. C. D.12.如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>4二、填空题(每题4分,共24分)13.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这个数据的平均数等于______.14.如图,一段抛物线:记为,它与轴交于两点,;将绕旋转得到,交轴于;将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第段抛物线上,则___________.15.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,,那么BD=_____.16.在△ABC中,∠C=90°,AC=,∠CAB的平分线交BC于D,且,那么tan∠BAC=_________.17.设x1,x2是一元二次方程7x2﹣5=x+8的两个根,则x1+x2的值是_____.18.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.三、解答题(共78分)19.(8分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?20.(8分)如图,若是由ABC平移后得到的,且中任意一点经过平移后的对应点为(1)求点小的坐标.(2)求的面积.21.(8分)某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(10分)在Rt△ABC中,AC=BC,∠C=90°,求:(1)cosA;(2)当AB=4时,求BC的长.23.(10分)如图,为了测量上坡上一棵树的高度,小明在点利用测角仪测得树顶的仰角为,然后他沿着正对树的方向前进到达点处,此时测得树顶和树底的仰角分别是和.设,且垂足为.求树的高度(结果精确到,).24.(10分)矩形中,线段绕矩形外一点顺时针旋转,旋转角为,使点的对应点落在射线上,点的对应点在的延长线上.(1)如图1,连接、、、,则与的大小关系为______________.(2)如图2,当点位于线段上时,求证:;(3)如图3,当点位于线段的延长线上时,,,求四边形的面积.25.(12分)如图,双曲线()与直线交于点和,连接和.(1)求双曲线和直线的函数关系式.(2)观察图像直接写出:当时,的取值范围.(3)求的面积.26.如图,已知菱形ABCD两条对角线BD与AC的长之比为3:4,周长为40cm,求菱形的高及面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】由正六边形的性质证出△AOB是等边三角形,由等边三角形的性质得出AB=OA,即可得出答案【详解】设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2cm,∴△AOB是等边三角形,∴AB=OA=2cm,∴正六边形ABCDEF的周长=6AB=12cm.故选D【点睛】此题主要考查了正多边形和圆、等边三角形的判定与性质;根据题意得出△AOB是等边三角形是解题关键.2、A【分析】作辅助线证明△∽△ON,列出比例式求出ON=,N=即可解题.【详解】解:过点作⊥x轴于M,过点作⊥x轴于N,由旋转可得,△∽△ON,∵OC=6,OA=10,∴ON::O=:OM:O=3:4:5,∴ON=,N=,∴的坐标为,故选A.【点睛】本题考查了相似三角形的性质,中等难度,做辅助线证明三角形相似是解题关键.3、A【分析】根据位似比为,可得,从而得:CE=DE=12,进而求得OC=6,即可求解.【详解】∵等腰与等腰是以点为位似中心的位似图形,位似比为,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴点的坐标是:.故选A.【点睛】本题主要考查位似图形的性质,掌握位似图形的位似比等于相似比,是解题的关键.4、C【解析】试题分析:由线段AB是⊙O的直径,弦CD丄AB,根据垂径定理的即可求得:,然后由圆周角定理可得∠BOD=2∠CAB=2×20°=40°.故选C.考点:圆周角定理;垂径定理.5、B【解析】根据圆心角与圆周角关系定理求出∠AOB的度数,进而由角的和差求得结果.【详解】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B.【点睛】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.6、C【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为故选C7、B【解析】连接AO,BO,∠P=36°,所以∠AOB=144°,所以∠ACB=72°.故选B.8、A【解析】试题分析:如图,四边形ABCD是菱形,且菱形的周长为40cm,设故选A.考点:1、菱形的性质;2、勾股定理.9、A【解析】一般地,如果两个变量x、y之间的关系可以表示成y=或y=kx-1(k为常数,k≠0)的形式,那么称y是x的反比例函数,据此进行求解即可.【详解】解:A、是反比例函数,正确;
B、是二次函数,错误;
C、是正比例函数,错误;
D、是一次函数,错误.
故选:A.【点睛】本题考查了反比例函数的识别,容易出现的错误是把当成反比例函数,要注意对反比例函数形式的认识.10、D【解析】点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.故选D.点睛:本题考查函数的图象.分三段依次考虑△ADE的面积变化情况是解题的关键.11、C【分析】根据无理数的定义进行判断即可.【详解】A.,有理数;B.,有理数;C.,无理数;D.,有理数;故答案为:C.【点睛】本题考查了无理数的问题,掌握无理数的定义是解题的关键.12、B【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<1.故选B.二、填空题(每题4分,共24分)13、.【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.14、-1【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【详解】∵y=−x(x−2)(0≤x≤2),∴配方可得y=−(x−1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,−1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,−1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,−1),A6(12,0);∴m=−1.故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标,学会从一般到特殊的探究方法,属于中考常考题型.15、【解析】:∵在RT△ABC中,∠C=90°,BC=8,tanA=,∴AC=,∴AB=,∵边AB的垂直平分线交边AB于点E,∴BE=,∵在RT△BDE中,∠BED=90°,∴cosB=,∴BD=,故答案为.点睛:本题考查了解直角三角形,线段平分线的性质,掌握直角三角形中边角之间的关系是解答本题的关键.16、【分析】根据勾股定理求出DC,推出∠DAC=30°,求出∠BAC的度数,即可得出tan∠BAC的值.【详解】在△DAC中,∠C=90°,由勾股定理得:DC,∴DCAD,∴∠DAC=30°,∴∠BAC=2×30°=60°,∴tan∠BAC=tan60°.故答案为:.【点睛】本题考查了含30度角的直角三角形,锐角三角函数的定义,能求出∠DAC的度数是解答本题的关键.17、【解析】把方程化为一般形式,利用根与系数的关系直接求解即可.【详解】把方程7x2-5=x+8化为一般形式可得7x2-x-13=0,
∵x1,x2是一元二次方程7x2-5=x+8的两个根,
∴x1+x2=.故答案是:.【点睛】主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.18、80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.三、解答题(共78分)19、(1)P(抽到数字为2)=;(2)不公平,理由见解析.【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析:(1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=,乙获胜的情况有2种,P=,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.20、(1)(-1,5),(-2,3),(-4,4);(2)三角形面积为2.5;【分析】(1)由△ABC中任意一点P(x,y)经平移后对应点为P1(x-5,y+2)可得△ABC的平移规律为:向左平移5个单位,向上平移2个单位,由此得到点A、B、C的对应点A1、B1、C1的坐标.
(2)利用矩形的面积减去三个顶点上三角形的面积即可.【详解】解:(1)∵△ABC中任意一点P(x,y)经平移后对应点为P1(x-5,y+2),
∴△ABC的平移规律为:向左平移5个单位,向上平移2个单位,
∵A(4,3),B(3,1),C(1,2),
∴点A1的坐标为(-1,5),点B1的坐标为(-2,3),点C1的坐标为(-4,4).
(2)如图所示,
△A1B1C1的面积=3×2-×1×3-×1×2-×1×2=.【点睛】本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.21、4米【分析】由题意过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,并利用解直角三角形进行分析求解即可.【详解】解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.1.∴AE=2.∵AB=57,∴BE=3.∵四边形BCFE是矩形,∴CF=BE=3.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=3.∴BC=EF=30-3=4.答:教学楼BC高约4米.【点睛】本题考查解直角三角形得的实际应用,利用解直角三角形相关结合锐角三角函数进行分析.22、(1);(2)【解析】(1)根据等腰直角三角形的判定得到△ABC为等腰直角三角形,则∠A=45°,然后利用特殊角的三角函数值求解即可;(2)根据∠A的正弦求解即可.【详解】∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴cosA=cos45°=,∴BC=AB=2,【点睛】本题考查解直角三角形及等腰直角三角形的判定,熟练掌握特殊角三角函数值是解题关键.23、15.7米【分析】设,在Rt△BCQ中可得,然后在Rt△PBC中得,进而得到PQ=,,然后利用建立方程即可求出,得到PQ的高度.【详解】解:设,∵在Rt△BCQ中,,∴又∵在Rt△PBC中,,∴∴,又∵,∴∵∴,解得:∴【点睛】本题考查了解直角三角形的应用,熟练利用三角函数解直角三角形是解题的关键.24、(1)相等;(2)见解析;(3)【分析】(1)由旋转得:旋转角相等,可得结论;
(2)证明△AOB≌△EOF(SAS),得∠OAB=∠OEF,根据平角的定义可得结论;
(3)如解图,根据等腰三角形的性质得:∠OFB=∠OBF=30°,∠OAE=∠AEO=30°,根据30度角的直角三角形的性质分别求得OB、OG、BF,勾股定理求得BE的长,再根据三角形面积公式即可求得结论.【详解】(1)由旋转得:∠AOE=∠BOF=,
故答案为:相等;(2)∵,∴,在△AOB和△EOF中,∴△AOB≌△EOF(SAS),∴,∵OA=OE,∴,∴;(3)如图,过点O作,垂足为G,根据旋转的性质知:∠BOF=120°,∠AOB=∠EOF,OB=OF,△BOF中,∠OFB=∠OBF=30°,
∴∠ABO=60°,
△AOE中,∠AOE=120°,OA=OE,
∴∠OAE=∠AEO=30°,
∴∠AOB=90°,
在△AOB和△EOF中,∴△AOB≌△EOF(SAS),∴,在中,∠AOB=90°,,∠OAB=30°,∴,在中,∠OGB=90°,,∠OBG=30°,∴,,∴,在中,∠EBF=90°,,,∴,∴.【点睛】本题是四边形的综合题,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级语文上册名篇名句默写
- 最棒的我语言活动
- 建筑给排水施工质量控制措施
- 石河子大学《数据库系统原理与应用》2022-2023学年期末试卷
- 石河子大学《工程材料》2022-2023学年第一学期期末试卷
- 沈阳理工大学《数据库原理与应用》2023-2024学年期末试卷
- 民航服务礼仪学习通超星期末考试答案章节答案2024年
- 精读《未来简史》学习通超星期末考试答案章节答案2024年
- 沈阳理工大学《化工原理Z》2022-2023学年第一学期期末试卷
- 沈阳理工大学《电路实验》2022-2023学年期末试卷
- 混合痔中医护理 方案
- 美国刑法制度
- 慢性病防治和健康生活知识讲座
- 2024年教师招聘考试-中小学校长招聘笔试参考题库含答案
- 中华民族共同体概论课件第十六讲文明新路与人类命运共同体
- 人教部编版一年级道德与法治上册第10课《吃饭有讲究》精美课件
- 2024-2030全球与中国铂铜合金市场现状及未来发展趋势
- 移风易俗乡风文明工作现场推进会上的发言范文
- 供电企业舆情的预防及处置
- (高清版)WST 433-2023 静脉治疗护理技术操作标准
- 医院科研合作与成果转化协议书
评论
0/150
提交评论