四川省成都崇庆中学2025届九年级数学第一学期期末教学质量检测试题含解析_第1页
四川省成都崇庆中学2025届九年级数学第一学期期末教学质量检测试题含解析_第2页
四川省成都崇庆中学2025届九年级数学第一学期期末教学质量检测试题含解析_第3页
四川省成都崇庆中学2025届九年级数学第一学期期末教学质量检测试题含解析_第4页
四川省成都崇庆中学2025届九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都崇庆中学2025届九年级数学第一学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D2.若是一元二次方程,则的值是()A.-1 B.0 C.1 D.±13.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟4.关于二次函数,下列说法错误的是()A.它的图象开口方向向上 B.它的图象顶点坐标为(0,4)C.它的图象对称轴是y轴 D.当时,y有最大值45.如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是()A. B. C. D.6.已知二次函数y=-x2+2mx+2,当x<-2时,y的值随x的增大而增大,则实数m()A.m=-2 B.m>-2 C.m≥-2 D.m≤-27.已知函数y=ax2+bx+c(a≠1)的图象如图,给出下列4个结论:①abc>1;②b2>4ac;③4a+2b+c>1;④2a+b=1.其中正确的有()个.A.1 B.2 C.3 D.48.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A. B. C. D.9.把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是A. B. C. D.10.如图,在中,为上一点,连接、,且、交于点,,则等于()A. B. C. D.11.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.12.如图,A,B是反比例函数y=图象上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形ABCD=9,则k值为()A.8 B.10 C.12 D.1.二、填空题(每题4分,共24分)13.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.14.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影部分=m,则S1+S2=_____.15.如图,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.如果∠BAC=30°,∠DAE=105°,则y与x之间的函数关系式为________________.16.如果抛物线与轴的一个交点的坐标是,那么与轴的另一个交点的坐标是___________.17.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.18.如图,半径为3的圆经过原点和点,点是轴左侧圆优弧上一点,则_____.三、解答题(共78分)19.(8分)如图已知直线与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.21.(8分)如图,一次函数y=kx+b的图象分别交x轴,y轴于A(4.0),B(0,2)两点,与反比例函数y=的图象交于C.D两点,CE⊥x轴于点E且CE=1.(1)求反比例函数与一次函数的解析式;(2)根据图象直接写出:不等式0<kx+b<的解集.22.(10分)如图,在△ABC中,CD平分∠ACB,DE∥BC,若,且AC=14,求DE的长.23.(10分)小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径,高,求这个圆锥形漏斗的侧面积.24.(10分)解方程:(1)x2﹣2x﹣3=1;(2)x(x+1)=1.25.(12分)(1)解方程:x(x+3)=–2;(2)计算:sin45°+3cos60°–4tan45°.26.如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积.

参考答案一、选择题(每题4分,共48分)1、B【解析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、C【分析】根据一元二次方程的概念即可列出等式,求出m的值.【详解】解:若是一元二次方程,则,解得,又∵,∴,故,故答案为C.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义并列出等式是解题的关键.3、B【详解】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm1,则BP为(8﹣t)cm,BQ为1tcm,由三角形的面积计算公式列方程得:×(8﹣t)×1t=15,解得t1=3,t1=5(当t=5时,BQ=10,不合题意,舍去).故当动点P,Q运动3秒时,能使△PBQ的面积为15cm1.故选B.【点睛】此题考查借助三角形的面积计算公式来研究图形中的动点问题.4、D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断.【详解】∵,∴抛物线开口向上,对称轴为直线x=0,顶点为(0,4),当x=0时,有最小值4,故A、B、C正确,D错误;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).5、D【分析】首先过点B作BC垂直OA于C,根据AO=4,△ABO是等辺三角形,得出B点坐标,迸而求出k的值.【详解】解:过点B作BC垂直OA于C,

∵点A的坐标是(2,0)

,AO=4,

∵△ABO是等边三角形∴OC=

2,BC=∴点B的坐标是(2,),把(2,)代入,得:k=xy=故选:D【点睛】本题考查的是利用等边三角形的性质来确定反比例函数的k值.6、C【解析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线∵,抛物线开口向下,∴当时,y的值随x值的增大而增大,∵当时,y的值随x值的增大而增大,∴,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.7、C【分析】二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点来确定,结合抛物线与x轴交点的个数来分析解答.【详解】解:①由抛物线的对称轴可知:>1,∴ab<1,由抛物线与y轴的交点可知:c>1,∴abc<1,故①错误;②由图象可知:△>1,∴b2−4ac>1,即b2>4ac,故②正确;③∵(1,c)关于直线x=1的对称点为(2,c),而x=1时,y=c>1,∴x=2时,y=c>1,∴y=4a+2b+c>1,故③正确;④∵,∴b=−2a,∴2a+b=1,故④正确.故选C.【点睛】本题考查了二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中等题型.8、A【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率==.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.9、D【解析】根据平移概念,图形平移变换,图形上每一点移动规律都是一样的,也可用抛物线顶点移动,根据点的坐标是平面直角坐标系中的平移规律:“左加右减,上加下减.”,顶点(-1,0)→(0,-2).因此,所得到的抛物线是.故选D.10、A【分析】根据平行四边形得出,再根据相似三角形的性质即可得出答案.【详解】四边形ABCD为平行四边形故选A.【点睛】本题考查了相似三角形的判定及性质,熟练掌握性质定理是解题的关键.11、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.12、B【分析】分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,根据反比例函数图象上点的坐标特征得到k=OD•t=t•5t,则OD=5t,所以B点坐标为(5t,t),于是AE=CE﹣CA=4t,BE=DE﹣BD=4t,再利用S四边形ABCD=S△ECD﹣S△EAB得到•5t•5t﹣•4t•4t=9,解得t2=2,然后根据k=t•5t进行计算.【详解】解:分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,∵A,B是反比例函数y=图象上两点,∴k=OD•t=t•5t,∴OD=5t,∴B点坐标为(5t,t),∴AE=CE﹣CA=4t,BE=DE﹣BD=4t,∵S四边形ABCD=S△ECD﹣S△EAB,∴•5t•5t﹣•4t•4t=9,∴t2=2,∴k=t•5t=5t2=5×2=2.故选:B.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题(每题4分,共24分)13、2【分析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14、8﹣2m【分析】根据反比例函数系数k的几何意义可得S四边形AEOF=4,S四边形BDOC=4,根据S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,可求S1+S2的值.【详解】解:如图,∵A、B两点在双曲线y=上,∴S四边形AEOF=4,S四边形BDOC=4,∴S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,∴S1+S2=8﹣2m故答案为:8﹣2m.【点睛】本题考查了反比例函数系数k的几何意义,熟练掌握在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15、【解析】∵∠BAC=30°,AB=AC,∴∠ACB=∠ABC=,∴∠ACE=∠ABD=180°-75°=105°,∵∠DAE=105°,∠BAC=30°,∴∠DAB+∠CAE=105°-30°=75°,又∵∠DAB+∠ADB=∠ABC=75°,∴∠ADB=∠CAE.∴△ADB∽△EAC,∴,即,∴.故答案为.16、【分析】根据抛物线y=ax2+2ax+c,可以得到该抛物线的对称轴,然后根据二次函数图象具有对称性和抛物线y=ax2+2ax+c与x轴的一个交点的坐标是(1,0),可以得到该抛物线与x轴的另一个交点坐标.【详解】∵抛物线y=ax2+2ax+c=a(x+1)2-a+c,

∴该抛物线的对称轴是直线x=-1,

∵抛物线y=ax2+2ax+c与x轴的一个交点的坐标是(1,0),

∴该抛物线与x轴的另一个交点的坐标是(-3,0),

故答案为:(-3,0).【点睛】此题考查二次函数的图形及其性质,解题的关键是明确题意,利用二次函数的性质解答.17、6.【解析】分析:设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解:设扇形的半径为r,根据题意得:60πr解得:r=6故答案为6.点睛:此题考查弧长公式,关键是根据弧长公式解答.18、【分析】由题意运用圆周角定理以及锐角三角函数的定义进行分析即可得解.【详解】解:假设圆与下轴的另一交点为D,连接BD,∵,∴BD为直径,,∵点,∴OB=2,∴,∵OB为和公共边,∴,∴.故答案为:.【点睛】本题考查的是圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等以及熟记锐角三角函数的定义是解题的关键.三、解答题(共78分)19、(1);(2),P(,);(3)N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).【分析】(1)将点代入,求出,将点代入,即可求函数解析式;(2)如图,过作轴,交于,求出的解析式,设,表示点坐标,表示长度,利用,建立二次函数模型,利用二次函数的性质求最值即可,(3)可证明△MAD是等腰直角三角形,由△QMN与△MAD相似,则△QMN是等腰直角三角形,设①当MQ⊥QN时,N(3,0);②当QN⊥MN时,过点N作NR⊥x轴,过点M作MS⊥RN交于点S,由(AAS),建立方程求解;③当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过M点的垂线分别交于点S、R;可证△MQR≌△QNS(AAS),建立方程求解;④当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;可证△MNR≌△NQS(AAS),建立方程求解.【详解】解:(1)将点代入,∴,将点代入,解得:,∴函数解析式为;(2)如图,过作轴,交于,设为,因为:所以:,解得:,所以直线AB为:,设,则,所以:,所以:,当,,此时:.(3)∵,∴,∴△MAD是等腰直角三角形.∵△QMN与△MAD相似,∴△QMN是等腰直角三角形,设①如图1,当MQ⊥QN时,此时与重合,N(3,0);②如图2,当QN⊥MN时,过点N作NR⊥x轴于,过点M作MS⊥RN交于点S.∵QN=MN,∠QNM=90°,∴(AAS),∴,∴,,∴,∴;③如图3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过点的垂线分别交于点S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),,,∴,∴t=5,(舍去负根)∴N(5,6);④如图4,当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴,∴.,∴,∴;综上所述:或或N(5,6)或.【点睛】本题考查二次函数的综合;熟练掌握二次函数的图象及性质,数形结合解题是关键.20、(1)见解析;(2)相切,理由见解析【分析】(1)连接OC,由D为的中点,得到,根据圆周角定理即可得到结论;

(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,从而得到结论.【详解】(1)证明:连接OC,∵D为的中点,∴,∴∠BOD=∠BOC,由圆周角定理可知,∠BAC=∠BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点睛】本题考查了直线与圆的位置关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.21、(1)y=﹣+2,y=﹣;(2)﹣2<x<4【分析】(1)根据待定系数法即可求得一次函数的解析式,由题意可知C的纵坐标为1,代入一次函数解析式即可求得C的坐标,然后代入y=求得m的值,即可求得反比例函数的解析式;(2)根据图象找出y=kx+b在x轴上方且在y=的下方的图象对应的x的范围.【详解】(1)根据题意,得,解得k=﹣,b=2,所以一次函数的解析式为y=﹣+2,由题意可知,点C的纵坐标为1.把y=1代入y=﹣+2,中,得x=﹣2.所以点C坐标为(﹣2,1).把点C坐标(﹣2,1)代入y=中,解得m=﹣3.所以反比例函数的解析式为y=﹣;(2)根据图像可得:不等式4<kx+b<的解集是:﹣2<x<4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.22、DE=8.【分析】先根据角平分线的性质和平行线的性质证得,再根据平行线分线段成比例即可得.【详解】如图,CD平分又,即故DE的长为8.【点睛】本题考查了角平分线的性质、平行线的性质、等腰三角形的性质、平行线分线段成比例,通过等角对等边证出是解题关键.23、【解析】首先根据底面半径OB=3cm,高OC=4cm,求出圆锥的母线长,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论