版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省右玉县2025届九上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.我们定义一种新函数:形如(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是()①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4,A.4 B.3 C.2 D.12.如图,△ABC中,D是AB的中点,DE∥BC,连结BE,若S△DEB=1,则S△BCE的值为()A.1 B.2 C.3 D.43.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别1234567分值90959088909285这组数据的中位数和众数分别是A.88,90 B.90,90 C.88,95 D.90,954.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.5.在实数3.14,﹣π,,﹣中,倒数最小的数是()A. B. C.﹣π D.3.146.如图,在扇形中,∠,,则阴影部分的面积是()A. B.C. D.7.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A.sinA= B.tanA= C.cosB= D.tanB=8.已知,当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,则m的值为()A.﹣5 B.﹣1 C.﹣1.25 D.19.的面积为2,边的长为,边上的高为,则与的变化规律用图象表示大致是()A. B.C. D.10.下列几何体中,主视图和左视图都是矩形的是()A. B. C. D.11.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.35° B.50° C.125° D.90°12.已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.若此蓄电池为某用电器的电源,限制电流不能超过12A,那么用电器的可变电阻R应控制在什么范围?()A.R≥3Ω B.R≤3Ω C.R≥12Ω D.R≥24Ω二、填空题(每题4分,共24分)13.已知关于x的一元二次方程有两个不相等的实数根,则k的取值范围是________.14.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为_____.15.不透明的口袋里有除颜色外其它均相同的红、白、黑小球共计120个,玲玲通过多次摸球实验后发现,摸到红球和黑球的概率稳定在和,那么口袋中白球的个数极有可能是_______个.16.如图,抛物线向右平移个单位得到抛物线___________.17.如图,矩形ABOC的顶点B、C分别在x轴、y轴上,顶点A在第一象限,点B的坐标为(,0),将线段OC绕点O顺时针旋转60°至线段OD,若反比例函数(k≠0)的图象进过A、D两点,则k值为_____.18.经过点的反比例函数的解析式为__________.三、解答题(共78分)19.(8分)如图,已知一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.(1)请直接写出不等式﹣x+n≤的解集;(2)求反比例函数和一次函数的解析式;(3)过点A作x轴的垂线,垂足为C,连接BC,求△ABC的面积.20.(8分)近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:,A区域所对应的扇形圆心角为度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?21.(8分)(1)计算:(2)解不等式组:,并求整数解。22.(10分)如图,已知AB经过圆心O,交⊙O于点C.(1)尺规作图:在AB上方的圆弧上找一点D,使得△ABD是以AB为底边的等腰三角形(保留作图痕迹);(2)在(1)的条件下,若∠DAB=30°,求证:直线BD与⊙O相切.23.(10分)如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数.(2)若弦BC=8cm,求图中劣弧BC的长.24.(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.25.(12分)如图是反比例函数y=的图象,当-4≤x≤-1时,-4≤y≤-1.(1)求该反比例函数的表达式;(2)若点M,N分别在该反比例函数的两支图象上,请指出什么情况下线段MN最短(不需要证明),并注出线段MN长度的取值范围.26.如图,在中,AC=4,CD=2,BC=8,点D在BC边上,(1)判断与是否相似?请说明理由.(2)当AD=3时,求AB的长
参考答案一、选择题(每题4分,共48分)1、A【分析】由(-1,0),(3,0)和(0,3)坐标都满足函数,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,②也是正确的;根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;从图象上看,存在函数值大于当时的,因此⑤时不正确的;逐个判断之后,可得出答案.【详解】解:①∵(-1,0),(3,0)和(0,3)坐标都满足函数,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此②也是正确的;③根据函数的图象和性质,发现当或时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为或,因此④也是正确的;⑤从图象上看,存在函数值要大于当时的,因此⑤是不正确的;故选A【点睛】理解“鹊桥”函数的意义,掌握“鹊桥”函数与与二次函数之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数与轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.2、B【解析】根据三角形中位线定理和三角形的面积即可得到结论.【详解】∵D是AB的中点,DE∥BC,∴CE=AE.∴DE=BC,∵S△DEB=1,∴S△BCE=2,故选:B.【点睛】本题考查了三角形中位线定理,熟练掌握并运用三角形中位线定理是解题的关键.3、B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,1,1,1,92,95,∴中位数是按从小到大排列后第4个数为:1.众数是在一组数据中,出现次数最多的数据,这组数据中1出现三次,出现的次数最多,故这组数据的众数为1.故选B.4、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.5、A【解析】先根据倒数的定义计算,再比较大小解答.【详解】解:在3.14,﹣π,,﹣中,倒数最小的数是两个负数中一个,所以先求两个负数的倒数:﹣π的倒数是﹣≈﹣0.3183,﹣的倒数是﹣≈﹣4472,所以﹣>﹣,故选:A.【点睛】本题考查了倒数的定义.解题的关键是掌握倒数的定义,会比较实数的大小.6、D【分析】利用阴影部分的面积等于扇形面积减去的面积即可求解.【详解】=故选D【点睛】本题主要考查扇形面积和三角形面积,掌握扇形面积公式是解题的关键.7、D【分析】根据三角函数的定义求解.【详解】解:∵在Rt△ABC中,∠ACB=90°,BC=1,AB=1.∴AC=,∴sinA=,tanA=,cosB=,tanB=.故选:D.【点睛】本题考查了解直角三角形,解答此题关键是正确理解和运用锐角三角函数的定义.8、A【分析】根据题意,分情况讨论:当二次函数开口向上时,在对称轴上取得最小值,列出关于m的一次方程求解即可;当二次函数开口向下时,在x=-1时取得最小值,求解关于m的一次方程即可,最后结合条件得出m的值.【详解】解:∵当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,∴m>0,当x=1时,该函数取得最小值,即﹣5m+1=6,得m=﹣1(舍去),m<0时,当x=﹣1时,取得最小值,即m(﹣1﹣1)2﹣5m+1=6,得m=﹣5,由上可得,m的值是﹣5,故选:A.【点睛】本题考查了二次函数的最值问题,注意根据开口方向分情况讨论,一次方程的列式求解,分情况讨论是解题的关键.9、A【分析】根据三角形面积公式得出与的函数解析式,根据解析式作出图象进行判断即可.【详解】根据题意得∴∵∴与的变化规律用图象表示大致是故答案为:A.【点睛】本题考查了反比例函数的图象问题,掌握反比例函数图象的性质是解题的关键.10、C【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A.主视图为圆形,左视图为圆,故选项错误;B.主视图为三角形,左视图为三角形,故选项错误;C.主视图为矩形,左视图为矩形,故选项正确;D.主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.11、C【分析】根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB1,再根据旋转的性质对应边的夹角∠BAB1即为旋转角.【详解】∵∠B=35°,∠C=90°,∴∠BAC=90°−∠B=90°−35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB1=180°−∠BAC=180°−55°=125°,∴旋转角等于125°.故选:C.【点睛】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.12、A【分析】直接利用图象上点的坐标得出函数解析式,进而利用限制电流不能超过12A,得出电器的可变电阻R应控制范围.【详解】解:设I=,把(9,4)代入得:U=36,故I=,∵限制电流不能超过12A,∴用电器的可变电阻R≥3,故选:A.【点睛】本题考查了反比例的实际应用,数形结合,利用图像解不等式是解题的关键二、填空题(每题4分,共24分)13、【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.,,方程有两个不相等的实数根,,.故答案为:.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14、【解析】试题解析:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长=,故答案为.15、1【分析】由摸到红球和黑球的概率稳定在50%和30%附近得出口袋中得到白色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红球和黑球的概率稳定在50%和30%左右,∴口袋中得到白色球的概率为1−50%−30%=20%,∴=20%,解得:x=1,即白球的个数为1个,故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.16、【分析】先确定抛物线的顶点坐标为(0,2),再利用点平移的规律得到点(0,2)平移后所得对应点的坐标为(1,2),然后根据顶点式可得平移后的抛物线的解析式.【详解】解:抛物线的顶点坐标为(0,2),把点(0,2)向右平移1个单位所得对应点的坐标为(1,2),∴平移后的抛物线的解析式是:;故答案为.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17、4【分析】过点D作DH⊥x轴于H,四边形ABOC是矩形,由性质有AB=CO,∠COB=90°,将OC绕点O顺时针旋转60°,OC=OD,∠COD=60°,可得∠DOH=30°,设DH=x,点D(x,x),点A(,2x),反比例函数(k≠0)的图象经过A、D两点,构造方程求出即可.【详解】解:如图,过点D作DH⊥x轴于H,∵四边形ABOC是矩形,∴AB=CO,∠COB=90°,∵将线段OC绕点O顺时针旋转60°至线段OD,∴OC=OD,∠COD=60°,∴∠DOH=30°,∴OD=2DH,OH=DH,设DH=x,∴点D(x,x),点A(,2x),∵反比例函数(k≠0)的图象经过A、D两点,∴x×x=×2x,∴x=2,∴点D(2,2),∴k=2×2=4,故答案为:4.【点睛】本题考查反比例函数解析式问题,关键利用矩形的性质与旋转找到AB=CO=OD,∠DOH=30°,DH=x,会用x表示点D(x,x),点A(,2x),利用A、D在反比例函数(k≠0)的图象上,构造方程使问题得以解决.18、【分析】设出反比例函数解析式解析式,然后利用待定系数法列式求出k值,即可得解.【详解】设反比例函数解析式为,则,解得:,∴此函数的解析式为.故答案为:.【点睛】本题考查了待定系数法求反比例函数解析式及特殊角的三角函数值,设出函数的表达式,然后把点的坐标代入求解即可,比较简单.三、解答题(共78分)19、(1)﹣2≤x<0或x≥4;(2)y=﹣,y=﹣x+2;(3)6【分析】(1)根据图像即可得到答案;(2)将点A(4,﹣2),B(﹣2,m)的坐标分别代入解析式即可得到答案;(3)过点B作BD⊥AC,根据点A、B的坐标求得AC、BD的长度,即可求得图形面积.【详解】解:(1)由图象可知:不等式﹣x+n≤的解集为﹣2≤x<0或x≥4;(2)∵一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.∴k=4×(﹣2)=﹣2m,﹣2=﹣4+n解得m=4,k=﹣8,n=2,∴反比例函数和一次函数的解析式分别为y=﹣,y=﹣x+2;(3)由(2)知B(-2,4),过点B作BD⊥AC,交AC的延长线于D,∵A(4,﹣2),B(-2,4),∴AC=2,BD=2+4=6,S△ABC=.【点睛】此题考查反比例函数的性质,待定系数法求函数解析式,反比例函数与一次函数的关系,在求图像中三角形面积时用点的坐标表示线段的长度.20、(1)32,1;(2)500人;(3)补图见解析;(4)5.88万人.【解析】分析:分析:(1)用1减去A,D,B,E的百分比即可,运用A的百分比乘360°即可.(2)用不关心的人数除以对应的百分比可得.(3)求出25-35岁的人数再绘图.(4)用14万市民乘C与D的百分比的和求解.本题解析:(1)m%=1-33%-20%-5%-10%=32%,所以m=32,A区域所对应的扇形圆心角为:360°×20%=1°,故答案为32,1.(2)一共调查的人数为:25÷5%=500(人).(3)(3)500×(32%+10%)=210(人)25−35岁的人数为:210−10−30−40−70=60(人)(4)14×(32%+10%)=5.88(万人)答:估计本地市民中会有5.88万人给出建议.21、(1);(2)原不等式组的整数解为:-4,±1,±2,±1,0.【分析】(1)根据实数的运算法则计算即可;(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,进而求其整数解即可.【详解】(1)解:(1)原式.(2)解:由①得≥;由②得≤1;∴﹣4≤x≤1.∴原不等式组的整数解为:-4,±1,±2,±1,0【点睛】本题考查了实数的混合运算和解不等式组,正确解出不等式组的解集是解决本题的关键.22、(1)作图见解析;(2)证明见解析.【分析】(1)作线段AB的垂直一部分线,交AB上方的圆弧上于点D,连接AD,BD,等腰三角形ABD即为所求作;(2)由等腰三角形的性质可求出∠B=30゜,连接OD,利用三角形外角的性质得∠DOB=60゜,再由三角形内角和求得∠ODB=90゜,从而可证得结论.【详解】(1)如图所示;(2)∵△ABD是等腰三角形,且∠DAB=30°,∴∠DBA=30゜,连接OD,∵OA=OD∴∠ODA=∠OAD=30゜∴∠DOB=∠ODA+∠OAD=60゜在△ODB中,∠DOB+∠ODB+∠DBO=180゜∴∠ODB=180゜-∠DOB-∠DBO=90゜,即∴直线BD与⊙O相切.【点睛】本题考查的是切线的判定,掌握“连交点,证垂直”是解决这类问题的常用解题思路.23、(1)60°;(2)【分析】(1)先根据垂径定理得出BE=CE,,再根据圆周角定理即可得出∠AOC的度数;(2)连接OB,先根据勾股定理得出OE的长,由弦BC=8cm,可得半径的长,继而求劣弧的长;【详解】解:(1)连接OB,∵BC⊥OA,∴BE=CE,,又∵∠ADB=30°,∴∠AOC=∠AOB=2∠ADB,∴∠AOC=60°;(2)连接OB得,∠BOC=2∠AOC=120°,∵弦BC=8cm,OA⊥BC,∴CE=4cm,∴OC=cm,∴劣弧的长为:【点睛】本题主要考查了勾股定理,垂径定理,圆周角定理,掌握勾股定理,垂径定理,圆周角定理是解题的关键.24、(1)见解析;(2)见解析.【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班级户外策划方案
- 石河子大学《园林工程制图》2021-2022学年第一学期期末试卷
- 房屋维修协议书范本(11篇)
- 石河子大学《跨文化传播》2023-2024学年第一学期期末试卷
- 沈阳理工大学《数字图像处理》2022-2023学年期末试卷
- 沈阳理工大学《俄罗斯文学史》2022-2023学年第一学期期末试卷
- 沈阳理工大学《超精密制造工程》2023-2024学年第一学期期末试卷
- 国家工商总局 建设工程勘察合同
- 合伙人招募合同
- 2024高考政治一轮复习第三单元发展社会主义民主政治第六课我国的人民代表大会制度课时作业含解析必修2
- 《湖南省建设工程计价办法》《湖南省建设工程消耗量标准》交底宣贯课件-2020湖南省房屋建筑与装饰工程消耗量标准交底
- 养老机构服务质量评价指标体系的构建
- MOOC 中国电影经典影片鉴赏-北京师范大学 中国大学慕课答案
- MOOC 信息安全数学基础-电子科技大学 中国大学慕课答案
- 婴幼儿托育服务与管理大学职业生涯规划
- CJT 358-2019 非开挖工程用聚乙烯管
- 5.4 核酸疫苗(mrna疫苗)
- 《金刚石、石墨和C60》第一课时名师课件
- 医疗设备维保服务售后服务方案
- 建筑垃圾清运服务投标方案技术标
- 学校食品安全课件(最终版)
评论
0/150
提交评论