广西玉林陆川县联考2024年中考冲刺卷数学试题含解析_第1页
广西玉林陆川县联考2024年中考冲刺卷数学试题含解析_第2页
广西玉林陆川县联考2024年中考冲刺卷数学试题含解析_第3页
广西玉林陆川县联考2024年中考冲刺卷数学试题含解析_第4页
广西玉林陆川县联考2024年中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西玉林陆川县联考2024年中考冲刺卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°-α B.90°+α C. D.360°-α2.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A.1 B.2 C.3 D.43.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A.12 B.14 C.16 D.184.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④5.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份6.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28B.26,26C.31,30D.26,227.3的相反数是()A.﹣3 B.3 C. D.﹣8.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1) B.(2,1) C.(2,2) D.(3,1)9.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是()A.(1,1) B.(,) C.(1,3) D.(1,)10.下列各式计算正确的是()A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b2二、填空题(共7小题,每小题3分,满分21分)11.正多边形的一个外角是,则这个多边形的内角和的度数是___________________.12.如图,在菱形ABCD中,于E,,,则菱形ABCD的面积是______.13.化简:=.14.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.15.如图,在△ABC中,∠C=90°,AC=8,BC=6,点D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使点A落在点A′处,当A′E⊥AC时,A′B=____.16.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.17.计算a3÷a2•a的结果等于_____.三、解答题(共7小题,满分69分)18.(10分)计算:.19.(5分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)20.(8分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.21.(10分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.22.(10分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201823.(12分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.求反比例函数的解析式;若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.24.(14分)我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.2、B【解析】

先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答【详解】将点A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有两个不等的实数根,∴x1+x2=4,x1•x2=3,∴AB=|x1﹣x2|==2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.3、C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.4、B【解析】

A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选C.5、B【解析】

解:各月每斤利润:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利润最大,故选B.6、B.【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.考点:中位数;加权平均数.7、A【解析】试题分析:根据相反数的概念知:1的相反数是﹣1.故选A.【考点】相反数.8、B【解析】

直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:∴棋子“炮”的坐标为(2,1),故答案为:B.【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.9、B【解析】

根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)到坐标原点的距离为<2,因此点在圆内,B选项(,)到坐标原点的距离为=2,因此点在圆上,C选项(1,3)到坐标原点的距离为>2,因此点在圆外D选项(1,)到坐标原点的距离为<2,因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.10、C【解析】

根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.【详解】A.a+3a=4a,故不正确;B.(–a2)3=(-a)6,故不正确;C.a3·a4=a7,故正确;D.(a+b)2=a2+2ab+b2,故不正确;故选C.【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、540°【解析】

根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和12、【解析】

根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积.【详解】∵sinD=∴∴AD=11∵四边形ABCD是菱形∴AD=CD=11∴菱形ABCD的面积=11×8=96cm1.故答案为:96cm1.【点睛】本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.13、2【解析】

根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】∵22=4,∴=2.【点睛】本题考查求算术平方根,熟记定义是关键.14、20.【解析】分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.解答:连接AC,BD在Rt△ABD中,BD=∵四边形ABCD是矩形,∴AC=BD=10,∵E、H分别是AB、AD的中点,∴EH∥BD,EF=BD=5,同理,FG∥BD,FG=BD=5,GH∥AC,GH=AC=5,∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.15、或7【解析】

分两种情况:①如图1,作辅助线,构建矩形,先由勾股定理求斜边AB=10,由中点的定义求出AD和BD的长,证明四边形HFGB是矩形,根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得:∠DA'E=∠A,A'D=AD=5,由矩形性质和勾股定理可以得出结论:A'B=;②如图2,作辅助线,构建矩形A'MNF,同理可以求出A'B的长.【详解】解:分两种情况:如图1,过D作DG⊥BC与G,交A'E与F,过B作BH⊥A'E与H,D为AB的中点,BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四边形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如图2,过D作MN//AC,交BC与于N,过A'作A'F//AC,交BC的延长线于F,延长A'E交直线DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四边形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;综上所述,A'B的长为或.故答案为:或.【点睛】本题主要考查三角形翻转后的性质,注意不同的情况需分情况讨论.16、【解析】

由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.【详解】设MN与OP交于点E,

∵点O、P的距离为4,

∴OP=4

∵折叠

∴MN⊥OP,EO=EP=2,

在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案为2-【点睛】本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.17、a1【解析】

根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.【详解】解:原式=a3﹣1+1=a1.故答案为a1.【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则.三、解答题(共7小题,满分69分)18、.【解析】

利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.【详解】解:原式==.故答案为.【点睛】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.19、(1)第一批T恤衫每件的进价是90元;(2)剩余的T恤衫每件售价至少要80元.【解析】

(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T恤衫每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.【详解】解:(1)设第一批T恤衫每件进价是x元,由题意,得,解得x=90经检验x=90是分式方程的解,符合题意.答:第一批T恤衫每件的进价是90元.(2)设剩余的T恤衫每件售价y元.由(1)知,第二批购进=50件.由题意,得120×50×+y×50×﹣4950≥650,解得y≥80.答:剩余的T恤衫每件售价至少要80元.20、(1)x=-1;(2)﹣6≤y≤1;【解析】

(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得.【详解】(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函数y=x2﹣2mx+5m的对称轴是x=,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴当x=﹣1时,y取得最小值﹣6,由表可知当x=﹣4时y=1,当x=﹣1时y=﹣6,∴当﹣4≤x≤1时,﹣6≤y≤1.【点睛】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.21、(1)见解析;(2)①120°;②45°【解析】

(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;

(2)①证出OA=OP=PA,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;

②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【详解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)①∵四边形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论