![广西防城岗市防城区2024年中考数学猜题卷含解析_第1页](http://file4.renrendoc.com/view5/M01/3A/1C/wKhkGGZ9VRWAJn3YAAIKix7BqFY151.jpg)
![广西防城岗市防城区2024年中考数学猜题卷含解析_第2页](http://file4.renrendoc.com/view5/M01/3A/1C/wKhkGGZ9VRWAJn3YAAIKix7BqFY1512.jpg)
![广西防城岗市防城区2024年中考数学猜题卷含解析_第3页](http://file4.renrendoc.com/view5/M01/3A/1C/wKhkGGZ9VRWAJn3YAAIKix7BqFY1513.jpg)
![广西防城岗市防城区2024年中考数学猜题卷含解析_第4页](http://file4.renrendoc.com/view5/M01/3A/1C/wKhkGGZ9VRWAJn3YAAIKix7BqFY1514.jpg)
![广西防城岗市防城区2024年中考数学猜题卷含解析_第5页](http://file4.renrendoc.com/view5/M01/3A/1C/wKhkGGZ9VRWAJn3YAAIKix7BqFY1515.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西防城岗市防城区2024年中考数学猜题卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米)2.102.202.252.302.352.402.452.50人数23245211则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.07252.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是()A.-1 B.-12 C.-3.下列交通标志是中心对称图形的为()A. B. C. D.4.的相反数是()A. B.﹣ C.﹣ D.5.已知二次函数(为常数),当时,函数的最小值为5,则的值为()A.-1或5 B.-1或3 C.1或5 D.1或36.估计﹣1的值为()A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间7.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为()A. B. C. D.8.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°9.主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为()A.135×107 B.1.35×109 C.13.5×108 D.1.35×101410.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.12.对于任意非零实数a、b,定义运算“”,使下列式子成立:,,,,…,则ab=.13.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.14.甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过__秒,甲乙两点第一次在同一边上.15.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.16.若一个棱柱有7个面,则它是______棱柱.17.函数中,自变量的取值范围是______三、解答题(共7小题,满分69分)18.(10分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.19.(5分)计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|20.(8分)如图是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等.21.(10分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.22.(10分)先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.23.(12分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?24.(14分)如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD.BE平分∠ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.(1)求证:△ADC≌△FDB;(2)求证:(3)判断△ECG的形状,并证明你的结论.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.2、B【解析】
根据两个负数,绝对值大的反而小比较.【详解】解:∵−12>−1>−2∴负数中最大的是−12故选:B.【点睛】本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.3、C【解析】
根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称的图形,但不是交通标志,不符合题意;
C、属于轴对称图形,属于中心对称的图形,符合题意;
D、不是中心对称的图形,不合题意.
故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.4、B【解析】
一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解.【详解】解:的相反数是﹣.故选:B.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.5、A【解析】
由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1,可得x=1时,y取得最小值5;②若h>3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【详解】解:∵x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1,当时,y随x的增大而增大,∴当x=1时,y取得最小值5,可得:,解得:h=−1或h=3(舍),∴h=−1;②若h>3,当时,y随x的增大而减小,当x=3时,y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上所述,h的值为−1或5,故选:A.【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键.6、C【解析】分析:根据被开方数越大算术平方根越大,可得答案.详解:∵<<,∴1<<5,∴3<﹣1<1.故选C.点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出1<<5是解题的关键,又利用了不等式的性质.7、D【解析】
根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线∴b<0,二次函数图形与轴有两个交点,则>0,∵当x=1时y=a+b+c<0,∴的图象经过第二四象限,且与y轴的正半轴相交,反比例函数图象在第二、四象限,只有D选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.8、C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故选C.考点:1.面动旋转问题;2.平行线的性质;3.旋转的性质;4.等腰三角形的性质.9、B【解析】
科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1350000000用科学记数法表示为:1350000000=1.35×109,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.10、B【解析】
连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.二、填空题(共7小题,每小题3分,满分21分)11、40°【解析】
根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.【详解】根据旋转的性质,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°−100°)=40°.故填:40°.【点睛】本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.12、【解析】试题分析:根据已知数字等式得出变化规律,即可得出答案:∵,,,,…,∴。13、1【解析】
解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=1,∴⊙O的半径为1,故答案为1.【点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.14、1【解析】试题分析:设x秒时,甲乙两点相遇.根据题意得:10x-5x=250,解得:x=50,相遇时甲走了250m,乙走了500米,则根据题意推得第一次在同一边上时可以为1.15、2【解析】
首先连接BD,由AB是⊙O的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度数,又由AD=6,求得AB的长,继而求得答案.【详解】解:连接BD,∵AB是⊙O的直径,∴∠C=∠D=90°,∵∠BAC=60°,弦AD平分∠BAC,∴∠BAD=∠BAC=30°,∴在Rt△ABD中,AB==4,∴在Rt△ABC中,AC=AB•cos60°=4×=2.故答案为2.16、5【解析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.17、x≠1【解析】
解:∵有意义,∴x-1≠0,∴x≠1;故答案是:x≠1.三、解答题(共7小题,满分69分)18、(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.【解析】
(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【详解】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则2k+b=03k+b=35,解得k=35∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距21米,由题意得,60x+70﹣95x=21,解得,x=1.2,前2分钟﹣3分钟,两机器人相距21米时,由题意得,35x﹣70=21,解得,x=2.1.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),设线段GH所在直线的函数解析式为:y=kx+b,则,4k+b=357k+b=0,解得k=-则直线GH的方程为y=-353x+当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米.【点睛】本题考查了一次函数的应用,读懂图像是解题关键..19、4【解析】
直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.【详解】(﹣2)0+()﹣1+4cos30°﹣|4﹣|=1+3+4×﹣(4﹣2)=4+2﹣4+2=4.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20、见解析【解析】
根据菱形的四条边都相等,两条对角线互相垂直平分,可以根据正方形的四边垂直,将小正方形的边作为对角线画菱形;也可以画出以AB为边长的正方形,据此相信你可以画出图形了,注意:本题答案不唯一.【详解】如图为画出的菱形:【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.本题掌握菱形的定义与性质是解题的关键.21、(1)2;(2)不同意他的看法,理由详见解析;(3)c=1.【解析】
(1)把y=x2﹣2x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(2)如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),则PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函数的性质得到抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”,然后对他的看法进行判断;(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为﹣c,从而得到抛物线y=x2﹣2x+3与抛物线的“亲近距离”,所以,然后解方程即可.【详解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴抛物线上的点到x轴的最短距离为2,∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为:2;(2)不同意他的看法.理由如下:如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,当t=时,PQ有最小值,最小值为,∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,∴不同意他的看法;(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,当t=时,MN有最小值,最小值为﹣c,∴抛物线y=x2﹣2x+3与抛物线的“亲近距离”为﹣c,∴,∴c=1.【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键.22、【解析】
根据分式的减法和除法可以化简题目中的式子,然后从﹣<x<的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.【详解】解:÷(﹣x+1)====,当x=﹣2时,原式=.【点睛】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.23、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.【解析】
(1)先利用待定系数法求一次函数解析式;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《CT胰腺炎性病变》课件
- 《产后病人的护理》课件
- 清明节品牌市场分析模板
- 探索管理学新境界
- 银行数字化转型路演模板
- 2025年高导热石墨膜项目合作计划书
- 小学感恩教师主题活动方案
- 扶贫搬迁申请书
- 辅导班申请书范文
- 事故申请书范文
- 胚胎植入前遗传学诊断
- 2024届甘肃省兰州市甘肃一中高一上数学期末联考试题含解析
- 初中体育篮球双手胸前传接球教案
- 物流基础培训资料
- 雷达原理-三-雷达接收机
- 跨境电商理论与实务PPT完整全套教学课件
- 公司股东合作协议书标准样本(2篇)
- 内蒙古自治区关于机关和全额拨款事业单位工作人员病事假工资待遇
- 探索者三维建筑结构建模设计软件说明书
- C++反汇编与逆向分析技术揭秘(第2版)
- 实验动物饲养人员岗位竞聘演讲范文汇报报告范文
评论
0/150
提交评论