




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省北京师范大广州实验校2024年中考数学模拟预测题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)2.如图,,则的度数为()A.115° B.110° C.105° D.65°3.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.米 B.米 C.米 D.米4.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为()A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣125.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰()丙丁平均数88方差1.21.8A.甲 B.乙 C.丙 D.丁6.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为()A.6 B.8C.10 D.127.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?()A.350 B.351 C.356 D.3588.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置()A.点A的左侧 B.点A点B之间C.点B点C之间 D.点C的右侧9.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.10.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.12.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()13.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.14.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是15.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线y=(x>0)与此正方形的边有交点,则a的取值范围是_______.16.如图,PC是⊙O的直径,PA切⊙O于点P,AO交⊙O于点B;连接BC,若,则______.三、解答题(共8题,共72分)17.(8分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.18.(8分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:.例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:.根据以上定义,解决下列问题:已知点P(3,-2).①若点A(-2,-1),则d(P,A)=;②若点B(b,2),且d(P,B)=5,则b=;③已知点C(m,n)是直线上的一个动点,且d(P,C)<3,求m的取值范围.⊙F的半径为1,圆心F的坐标为(0,t),若⊙F上存在点E,使d(E,O)=2,直接写出t的取值范围.19.(8分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.20.(8分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由21.(8分)计算:22.(10分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.23.(12分)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.24.计算:|﹣2|+8+(2017﹣π)0﹣4cos45°
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】
由题意可知,点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.【详解】由题意可知,点A与点A1关于原点成中心对称,∵点A的坐标是(﹣3,2),∴点A关于点O的对称点A'点的坐标是(3,﹣2).故选A.【点睛】本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.2、A【解析】
根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.【详解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°−65°=115°,故选:A.【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.3、C【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、A【解析】
根据科学记数法的表示方法解答.【详解】解:把这个数用科学记数法表示为.故选:.【点睛】此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.5、D【解析】
求出甲、乙的平均数、方差,再结合方差的意义即可判断.【详解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均数为8,方差为1.2,丁的平均数为8,方差为1.8,故4个人的平均数相同,方差丁最大.故应该淘汰丁.故选D.【点睛】本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.6、D【解析】
根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.7、B【解析】
根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【详解】解:小昱所写的数为1,3,5,1,…,101,…;阿帆所写的数为1,8,15,22,…,设小昱所写的第n个数为101,根据题意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.故选B.【点睛】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.8、C【解析】分析:根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.详解:A选项中,若原点在点A的左侧,则,这与已知不符,故不能选A;B选项中,若原点在A、B之间,则b>0,c>0,这与b·c<0不符,故不能选B;C选项中,若原点在B、C之间,则且b·c<0,与已知条件一致,故可以选C;D选项中,若原点在点C右侧,则b<0,c<0,这与b·c<0不符,故不能选D.故选C.点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.9、C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.考点:中心对称图形的概念.10、A【解析】
此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:,解得:a=1,经检验,a=1是原分式方程的解,故本题选A.二、填空题(本大题共6个小题,每小题3分,共18分)11、(﹣3,2)【解析】
作出图形,然后写出点A′的坐标即可.【详解】解答:如图,点A′的坐标为(-3,2).
故答案为(-3,2).
【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解.12、C【解析】
先证明△BPE∽△CDP,再根据相似三角形对应边成比例列出式子变形可得.【详解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故选C.考点:1.折叠问题;2.相似三角形的判定和性质;3.二次函数的图象.13、【解析】
此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.【详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,代入求出BF和CM,相加即可求出答案.过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴,∵AM=PM=(OA-OP)=(4-2x)=2-x,即,解得:∴BF+CM=.故答案为.【点睛】考核知识点:二次函数综合题.熟记性质,数形结合是关键.14、4【解析】
当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.【详解】当CD∥AB时,PM长最大,连接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M为CD中点,OM过O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC,∵⊙O直径AB=8,∴半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.15、【解析】
因为A点的坐标为(a,a),则C(a﹣1,a﹣1),根据题意只要分别求出当A点或C点在曲线上时a的值即可得到答案.【详解】解:∵A点的坐标为(a,a),∴C(a﹣1,a﹣1),当C在双曲线y=时,则a﹣1=,解得a=+1;当A在双曲线y=时,则a=,解得a=,∴a的取值范围是≤a≤+1.故答案为≤a≤+1.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.16、26°【解析】
根据圆周角定理得到∠AOP=2∠C=64°,根据切线的性质定理得到∠APO=90°,根据直角三角形两锐角互余计算即可.【详解】由圆周角定理得:∠AOP=2∠C=64°.∵PC是⊙O的直径,PA切⊙O于点P,∴∠APO=90°,∴∠A=90°﹣∠AOP=90°﹣64°=26°.故答案为:26°.【点睛】本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.三、解答题(共8题,共72分)17、(1)50;(2)108°;(3).【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.18、(1)①6,②2或4,③1<m<4;(2)或.【解析】
(1)①根据“折线距离”的定义直接列式计算;②根据“折线距离”的定义列出方程,求解即可;③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知,根据图像易得t的取值范围.【详解】解:(1)①②∴∴b=2或4③,即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m<4(2)设E(x,y),则,如图,若点E在⊙F上,则.【点睛】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.19、(1)50,108°,补图见解析;(2)9.6;(3).【解析】
(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=.【点睛】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.20、(1);(2)(0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】
(1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.(2)用t表示P、M、N的坐标,由等式得到函数关系式.(3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.【详解】解:(1)x=0时,y=1,∴点A的坐标为:(0,1),∵BC⊥x轴,垂足为点C(3,0),∴点B的横坐标为3,当x=3时,y=,∴点B的坐标为(3,),设直线AB的函数关系式为y=kx+b,,解得,,则直线AB的函数关系式(2)当x=t时,y=t+1,∴点M的坐标为(t,t+1),当x=t时,∴点N的坐标为(0≤t≤3);(3)若四边形BCMN为平行四边形,则有MN=BC,
∴,解得t1=1,t2=2,∴当t=1或2时,四边形BCMN为平行四边形,
①当t=1时,MP=,PC=2,∴MC==MN,此时四边形BCMN为菱形,②当t=2时,MP=2,PC=1,∴MC=≠MN,此时四边形BCMN不是菱形.【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用.21、5【解析】
本题涉及零指数幂、负整数指数幂、绝对值、乘方四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式=4-8×0.125+1+1=4-1+2=5【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方、绝对值等考点的运算.22、40%【解析】
先设第次降价的百分率是x,则第一次降价后的价格为500(1-x)元,第二次降价后的价格为500(1-2x),根据两次降价后的价格是240元建立方程,求出其解即可.【详解】第一次降价的百分率为x,则第二次降价的百分率为2x,根据题意得:500(1﹣x)(1﹣2x)=240,解得x1=0.2=20%,x2=1.3=130%.则第一次降价的百分率为20%,第二次降价的百分率为40%.【点睛】本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可.23、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解析】
(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.【详解】(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.综上所述:在等腰三角形△ADP中,若PA=PD,则BP=1;若DP=DA,则BP=2-;若AP=AD,则BP=.(1)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF为直径作⊙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 量子计算技术助力金融风控2025年风险模拟应用深度解析
- 咖啡连锁品牌在咖啡文化交流活动中的扩张策略研究报告
- 面向2025年的共享出行平台信用体系建设与信用数据安全与隐私保护报告
- 《变形记》读后感4篇
- 2025年聚砜及其合金项目发展计划
- 西藏2025年上半年房地产经纪人《制度与政策》相关:城镇土地考试试题
- 私人工厂劳务派遣合同范本2025年
- 离婚协议书一方出轨(2025版)
- 6-综合训练循环小数
- 卖车协议书合同2025年
- 银行贷款政策课件
- 宁海县三资管理办法
- 2025版本的房屋征收补偿协议
- 2025社区工作者考试试题(含答案)
- 【真题】人教版七年级下学期7月期末数学试题(含解析)湖南省长沙市长沙市一中教育集团联考2024-2025学年
- SAVI综合征靶向治疗研究进展
- 物业资产考试试题及答案
- 氧化钨化学计量比对其物理化学性质的影响规律
- 口腔诊所污水管理制度
- DZ/T 0275.5-2015岩矿鉴定技术规范第5部分:矿石光片鉴定
- 苹果授权协议书
评论
0/150
提交评论