版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《7.5正态分布》教案
【教材分析】
本节课选自《2019人教A版高中数学选择性必修第三册》,第七章《随机变量及其分布
列》,本节课主本节课主要学习正态分布
本节课是前面学习了离散型随机变量,离散型随机变量的取值是可列的。而连续型随机变
量,连续型随机变量是在某个区间内可取任何值。其重要的代表一一正态分布。
《正态分布》该节内容通过研究频率分布直方图、频率分布折线图、总体密度曲线,引出
拟合的函数式,进而得到正态分布的概念,然后,分析正态曲线的特点和性质,最后研究
了它的应用一一随机变量落在某个区间的概率。正态分布是描述随机现象的一种最常见的
分布,在现实生活中有非常广泛的应用。
【教学目标与核心素养】
课程目标学科素养
A.通过误差模型,了解服从正态分布的随机变量;1.数学抽象:正态分布曲线的特点
2.通过具体实例,借助频率分布直方图的几何直观,2.逻辑推理:正态分布的概念
了解正态分布的特点;3.数学运算:求随机变量在特殊区间内
3.了解正态分布的均值、方差及其含义;的概率
4.了解3。原则,会求随机变量在特殊区间内的概率.4.数学建模:模型化思想
【重点与难点】
重点:认识分布曲线的特点及曲线所表示的意义.了解3。原则.
难点:.会求随机变量在特殊区间内的概率.
【教学过程】
教学过程教学设计
一、探究新知
现实中,除了前面已经研究过的离散型随机变量外,还有大量问题中的随
机变量,不是离散的,它们的取值往往充满某个区间甚至整个实轴,但取
一点的概率为0,我们称这类随机变量为连续性随机变量,下面我们看一
个具体问题.通过具体的问题情
境,引发学生思考
探究1:自动流水线包装的食盐,每袋标准质量为400g.由于各种不可控积极参与互动,说
的因素,任意抽取一袋食盐,它的质量与标准质量之间或多或少会存在一出自己见解。从而
定的误差(实际质量减去标准质量).用X表示这种误差,则X是一个连续引入正态分布的概
型随机变量.检测人员在一次产品检验中,随机抽取了100袋食盐,获得念,发展学生逻辑
误差X(单位:g)的观测值如下:推理、数学运算、
数学抽象和数学建
模白J核心素养。
-0.6-1.4-0.73.3-2.9-5.21.40.14.40.€
-2.6-3.4-0.7-3.2-1.72.90.61.72.9
0.5-3.72.71.1-3.0-2.61.72.60,
1.9
2.6-2.0-0.21.8-0.7_1.3_1.30.2_2.1
0.5
2.4-1.5-0.43.8-0.11.50.3-1.80.02.f
3.5-4.2-1.0-0.20.10.9L12.20.9-0.6
-4.4-1.13.9-1.0-0.61.70.3-2.4-0.1-1.7
-0.5-0.81.71.44.41.2-3.1-2.1-1.6
1.8
2.20.34.8-0.8-3.5-2.73.81.4-3.5-0.9
-2.2-0.7-1.31.5-1.5-2.21.01.31.7-0.9
(1).如何描述这100个样本误差数据的分布?
(2).如何构建适当的概率模型刻画误差X的分布?
可用频率分布直方图描述这组误差数据的分布,如右图.所示.频率分布直
方图中每个小矩形的面积表示误差落在相应区间内的频率,所有小矩形的
面积之和为1.
观察图形,误差观测值有正有负,并大致对称地分布在x=o的两侧,而且小
误差比大误差出现得更频繁.
随着样本数据量越来越大,让分组越来越多,组距越来越小,山频率的稳定
性可知,规率分布直方图的轮廓就越来越稳定,接近一条光滑的钟形曲线,
如右图所示。
根据频率与概率的关系,可用以用上图中的钟型曲线来描述袋装食盐质量通过问题分析,让
误差的概率分布.任意抽取一袋盐,误差落在[-2,-1]内的概率,可以用图学生掌握正态分布
中黄色阴影部分的面积表示.曲线的特点。发展
学生逻辑推理,直
问题1:由函数知识可知,图中的钟形曲线是一个函数,那么,这个函数观想象、数学抽象
是否存在解析式呢?和数学运算的核心
素养。
即X~N(O,1).
对任意的xCR,f(x)>0,它的图象在x轴的上方.可以证明x轴和曲线之间
的区域的面积为1.我们称f(x)为正态密度函数,称它的图象为正态密度曲
线,简称正态曲线,如上图所示.若随机变量X的概率分布密度函数为
f(x),则称随机变量X服从正态分布(normaldis-tribution),记为
2
X~N(u,。).特别地,当u=0,o=l时,称随机变量X服从标准正态分布.
正态分布的定义
正态分布在概率和统计中占有重要地位,它广泛存在于自然现象、生产和
生活实践之中.在现实生活中,很多随机变量都服从或近似服从正态分布
例如,某些物理量的测量误差某一地区同年龄人群的身高、体重、肺活量
等一定条件下生长的小麦的株高、穗长、单位面积产量自动流水线生产的
各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容)某地每
年7月的平均气温、平均湿度、降水量等
探究2:观察正态曲线及相应的密度函数,你能发现正态曲线的哪些特
点?
其中PCR,。>0为参数.
由X的密度函数及图像可以发现,正态曲线有以下特点:
(1)曲线在x轴的上方,与x轴不相交.
(2)曲线是单峰的,它关于直线x=u对称.
(3)曲线在x=u处达到峰值矗(最高点)
(4)当凶无限增大时,曲线无限接近x轴.
(5)X轴与正态曲线所夹面积恒等于1.
探究3:观察正态曲线、相应的密度函数及概率的性质,你能发现正态曲
线的哪些特点?
(1)当。一定时,曲线随着U的变化而沿x轴平移;
(2)当u一定时,曲线的形状由。确定.
。越大,曲线越“矮胖”,表示总体的分布越分散;
。越小,曲线越“瘦高”,表示总体的分布越集中.
正态分布的期望和方差
参数P反映了正态分布的集中位置,。反映了随机变量的分布相对于均
值口的
离散程度。
若X~N(〃,er2),则E(X)=〃,O(X)=N
概念辨析
1、把一个正态曲线a沿着横轴方向向右移动2个单位,得到新的一条曲
线b。下列说法中不正确的是()
A.曲线b仍然是正态曲线;
B.曲线a和曲线b的最高点的纵坐标相等;
C.以曲线b为概率密度曲线的总体的期望比以曲线a为概率密度曲线的总
体的期望大2;
D.以曲线b为概率密度曲线的总体的方差比以曲线a为概率密度曲线的总
体的方差大2。
答案:D
二、典例解析
例1:李明上学有时坐公交车,有时骑自行车.他各记录了50次坐公交车
和骑自行车所花的时间,经数据分析得到,坐公交车平均用时30min,样
本方差为36;骑自行车平均用时34min,样本方差为4;假设坐公交车用
时X和骑自行车用时Y都服从正态分布.
(1)估计X,Y的分布中的参数;
(2)根据(1)中的估计结果,利用信息技术工具画出X和Y的分布密度曲
线;
(3)如果某天有38曲|可用,李明应选择哪种交通工具?如果某天只有
34min可用,又应该选择哪种交通工具?请说明理由.通过典例解析,在
分析:对于第(1)问,正态分布由参数u和。完全确定,根据正态分布参具体的问题情境
数的意义可以分别用样本均值和样本标准差来估计.对于第(3)问,这是一中,深化对正态分
个概率决策问题,首先要明确决策的准则,在给定的时间内选择不迟到概率布的理解。发展学
大的交通工具;然后结合图形,相据概率的表示,比较概率的大小,作出判断生逻辑推理,直观
解:(1)随机变量X的样本均值为30,样本标准差为6;想象、数学抽象和
随机变量Y的样本均值为34,样本标准差为2.数学运算的核心素
用样本均值估计参数U.用样本标准差估计参数。,可以得到养。
X~N(30,6),Y~N(34,2).
(2)X和Y的分布密度曲线如图所示,
(3)应选择在给定时间内不迟到的概率大的交通工具.
由图可知,Y的密度曲线X的密度曲线P(XW38)〈P(YW38),
P(XW34)>P(YW34).
所以,如果有38min可用,那么骑自行车不迟到的概率大,应选择骑自行车;
如果只有34min可用,那么坐公交车不迟到的概率大,应选择坐公交车,
正态分布的3。原则
假设X~N(u,a2),可以证明:对给定的kGN*,P(u-koW)
是一个只与k有关的值。
〃+2b
*-68.27%•>;
95.45%
99.73%
[〃-3c,〃+3用中的值,这在统计学中称为3o原则.
①P(U—。WXWu+o)«0.6827;
②P(口一2。WXWN+2。)々0.9545;
③P(u-3。WXWu+3o)=0.9973.
特别地,尽管正态变量的取值范围是(-8,+8),但在一次试验中,x的取
值几乎总落在区间[〃-36〃+3。]内,而在此区间外取值的概率大约只有
0.0027,通常认为这种情况几乎不可能发生.
2
在实际应用中,通常认为服从于正态分布N(出。)的随机变量X只取
例2.假设某地区高二学生的身高服从正态分布,且均值为170(单位:
cm,下同),标准差为10.在该地区任意抽取一名高二学生,求这名学生
的身高:
(1)不高于170的概率;
(2)在区间[160,180]内的概率;
(3)不高于180的概率.
解:设该学生的身高为X,由题意可知)CN(170,102).
(1)P(X<170)=50%,
(2)因为均值为170,标准差为10,而160=170-10,180=170+10,所以
P(160WXW180)=P(|X-170IW10)弋68.3%,
(3)由(2)以及正态曲线的对称性可知
P(170WXW180)=P(160WX<180)*1x68.3^=34.15%,
由概率加法公式可知P(XW180)=P(XW170)+P(170WXW180)
y50%+34.15%=84.15%.
服从正态分布的随机变量在某个区间内取值概率的求解策略
(1)充分利用正态曲线的对称性和曲线与X轴之间面积为1.
(2)注意概率值的求解转化:
①P(X〈a)=l-P(X2a);
②P(XWn-a)=P(X2u+a);
(3)熟记P(u-oWXWu+o),P(u-2oWXWu+2o),P(u-
3。WXWu+3。)的值.
③若b<u,则P(X(b)
跟踪训练1.某厂包装食盐的生产线,正常情况下生产出来的食盐质量服
从正态分布N(500,52)(单位:g).该生产线上的检测员某天随机抽
取了两包食盐,称得
其质量均大于大于515g.
(1)求正常情况下,任意抽取一包食盐,质量大于515g的概率约为多
少;
(2)检测员根据抽检结果,判断出该生产线出现异常,要求立即停产检
修,检测员的判断是否合理?请说明理由.
解:设正常情况下,该生产线上包装出来的白糖质量为X?,由题意可
知X~/V(500,52).
⑴由于515=500+3x5,所以根据正态分布的对称性与“3o■原则”
可知
11
P(X>515)=—(X-3X5|>500)«-x0.003=0.0015.
(2)检测员的判断是合理的.因为如果生产线不出现异常的话,由(1)可
知,随机抽取两包检查,质量都小于515g的概率约为
0.00&0.0015=2.25*10叫
几乎为零,但这样的事件竟然发生了,所以有理由认为生产线出现异常,
检测员的判断是合理的.
三、达标检测
1.下列函数是正态分布密度函数的是()通过练习巩固本节
所学知识,通过学
生解决问题,发展
A.f(x)--^=^e,u,。(。>0)都是实数
学生的数学运算、
B.f(x)=—e'T
2n逻辑推理、直观想
1(x-i)2
Cf(x』F象、数学建模的核
心素养。
D.f(x)=-7=e~
V27T
解析:对照正态分布密度函数:f(x)B-・e一零(xeR),注意指数中的。
V27TCT
和系数的分母中的。要一致,以及指数部分是一个负数.
答案:B
2.在某项测量中,测量结果€服从正态分布N(0,。\若&在(-8,-1)内
取值的概率为0.1,则&在(0,1)内取值的概率为()
A.0.8B.0.4C.0.2D.0.1
解析:服从正态分布N(0,。’),.•.曲线的对称轴是直线x=0.
VP(&<-1)=0.1,.\P(g>1)=0.1.
二C在区间(0,1)内取值的概率为0.5-0.1=0.4,故选B.
答案:B
3.某县农民月均收入服从N(500,20j的正态分布,则此县农民月均收入在
500元到520元间人数的百分比约为__________.
解析:因为月收入服从正态分布N(500,20k
所以U=500,o=20,U-o=480,u+a=520.
所以月均收入在[480,520]范围内的概率为0.683.
由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比
约为34.15%.
答案:34.15%
4.某种零件的尺寸&(单位:cm)服从正态分布N(3,;),则不属于区间
[1,5]这个尺寸范围
的零件数约占总数的_________.
解析:零件尺寸属于区间[U-2。,U+2。],
即零件尺寸在[1,5]内取值的概率约为95.4%,
故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.
答案:4.6%
5.设在一次数学考试中,某班学生的分数X~N(110,20;且知试卷满分
150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分
及90分以上)的人数和130分以上的人数.
解:u=110,。=20,P(X>90)=P(X-1102-20)=P(X-m2-。),
VP(X-U<-。)+P(-。wx-uW。)+P(X-u>。)
«=2P(X-y<-o)+0.683=1,
.\P(X-u<-o)=0.1585.
.\P(X^90)=l-P(X-u<-o)=1-0.1585=0.8415.
A54X0.8415^45(人),即及格人数约为45人.
*/P(X>130)=P(X-110>20)=P(X-U>a),
P(X-u<-。)+P(-。NX-uW。)+P(X落口>。)=0.683+2P(X-u>o)=1,
.,.P(X-u>o)=0.1585,
即P(X>130)=0.1585.
A54X0.1585-9(人),
即130分以上的人数约为9人.
四、小结通过总结,让学生
进一步巩固本节所
正态曲线I学内容,提高概括
正态分布----正态曲线的性质能力。
T正态分布的3。原则
【教学反思】
课后通过对教学过程的反思与研究,才能不断完善教学设计中的不足,才能提升教材分析
的能力和课堂教学实效.
1.多元展示,多方评价.在教学过程中我借问题牵引,保证了课堂教学的顺利实施;而在
整个过程中,我对学生所作练习、疑问及时解析评价;学生之间、小组之间的互相评价补
充,使学生共享成果分享喜悦,坚定了学好数学的信念,实现了预期目标.
2.创造性的使用教材.有别于教材,我在教学中,让学生考察了分别考察了两类题型之后
再引导学生进行归纳,这样更贴近学生的认知水平,学生课后反馈,效果较为理想.
《7.5正态分布》导学案
【学习目标】
1.通过误差模型,了解服从正态分布的随机变量;
2.通过具体实例,借助频率分布直方图的儿何直观,了解正态分布的特点;
3.了解正态分布的均值、方差及其含义;
4.了解3。原则,会求随机变量在特殊区间内的概率.
【重点与难点】
重点:认识分布曲线的特点及曲线所表示的意义.了解3。原则.
难点:.会求随机变量在特殊区间内的概率.
【知识梳理】
1.正态分布的定义
对任意的x£R,f(x)>0,它的图象在x轴的上方.可以证明x轴和曲线之间的区域的面积为
1.我们称f(x)为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,如上图所示.若
随机变量X的概率分布密度函数为f(x),则称随机变量X服从正态分布(normaldis-
tribution),记为X~N(u,。").特别地,当u=0,。=1时,称随机变量X服从标准正态分布.
即X~N(O,1).
2.由X的密度函数及图像可以发现,正态曲线有以下特点:
(1)曲线在x轴的上方,与x轴不相交.
(2)曲线是单峰的,它关于直线x=U对称.
(3)曲线在x=u处达到峰值岛(最高点)
(4)当|X|无限增大时,曲线无限接近x轴.
(5)X轴与正态曲线所夹面积恒等于1.
3.正态分布的期望和方差
参数P反映了正态分布的集中位置,。反映了随机变量的分布相对于均值U的
离散程度。
若X~N(〃,CT2),则E(X)=〃,D(X)=(T2.
(1)当。一定时,曲线随着u的变化而沿X轴平移;
⑵当u一定时,曲线的形状由。确定.
。越大,曲线越“矮胖”,表示总体的分布越分散;
。越小,曲线越“瘦高”,表示总体的分布越集中.
4.
44.正态分布的3。原则
假设X~N(u,a2),可以证明:对给定的k£N*,P(u-koWX於u+k。)
是一个只与k有关的值。
〃卬〃pfcr2b阮3b
・•••68.27%…4:
95.45%
99.73%
特别地,尽管正态变量的取值范围是(-8,+8),但在一次试验中,X的取值几乎总落在区间
[4-36〃+3o]内,而在此区间外取值的概率大约只有0.0027,通常认为这种情况几乎不可能
发生.
在实际应用中,通常认为服从于正态分布N(%J)的随机变量X只取〃+3月中的值,这
在统计学中称为3。原则.
①P(□一。WXWu+0)«0.6827;②P(u-2。WXW口+2。)20.9545;(3)
P(u-3oWXWN+3O)H9973.
1、把一个正态曲线a沿着横轴方向向右移动2个单位,得到新的一条曲线b。下列说法中
不正确的是()
A.曲线b仍然是正态曲线;
B.曲线a和曲线b的最高点的纵坐标相等;
C.以曲线b为概率密度曲线的总体的期望比以曲线a为概率密度曲线的总体的期望大2;
1).以曲线b为概率密度曲线的总体的方差比以曲线a为概率密度曲线的总体的方差大2。
【学习过程】
一、问题探究
现实中,除了前面已经研究过的离散型随机变量外,还有大量问题中的随机变量,不是离
散的,它们的取值往往充满某个区间甚至整个实轴,但取一点的概率为0,我们称这类随
机变量为连续性随机变量,下面我们看一个具体问题.
探究1:自动流水线包装的食盐,每袋标准质量为400g.由于各种不可控的因素,任意抽取
一袋食盐,它的质量与标准质量之间或多或少会存在一定的误差(实际质量减去标准质量).
用X表示这种误差,则X是一个连续型随机变量.检测人员在一次产品检验中,随机抽取了
100袋食盐,获得误差X(单位:g)的观测值如下:
-0.6-1.4-0.73.3-2.9-5.21.40.14.40.9
-2.6-3.4-0.7-3.2-1.72.90.61.72.91.2
0.5-3.72.71.1-3.0-2.6-1.91.72.60.4
2.6-2.0-0.21.8-0.7-1.3-0.5-L30.2-2.1
2.4-1.5-0.43.8-0.11.50.3-1.80.02.5
3.5-4.2-1.0-0.20.10.91.12.20.9-0.6
-4.4-1.13.9-1.0-0.61.70.3-2.4-0.1-1.7
-0.5-0.81.71.44.41.2-1.8-3.1-2.1-1.6
2.20.34.8-0.8-3.5-2.73.81.4-3.5-0.9
-2.2-0.7-1.31.5-1.5-2.2L01.31.7-0.9
(1).如何描述这100个样本误差数据的分布?
(2).如何构建适当的概率模型刻画误差X的分布?
可用频率分布直方图描述这组误差数据的分布,如右图.所示.频率分布直方图中每个小矩形
的面积表示误差落在相应区间内的频率,所有小矩形的面积之和为1.
观察图形,误差观测值有正有负,并大致对称地分布在x=o的两侧,而且小误差比大误差出
现得更频繁.随着样本数据量越来越大,让分组越来越多,组距越来越小,由频率的稳定性可
知,规率分布直方图的轮廓就越来越稳定,接近一条光滑的钟形曲线,如右图所示。
根据频率与概率的关系,可用以用上图中的钟型曲线来描述袋装食盐质量误差的概率分布.
任意抽取一袋盐,误差落在[-2,-1]内的概率,可以用图中黄色阴影部分的面积表示.
问题1:由函数知识可知,图中的钟形曲线是一个函数,那么,这个函数是否存在解析式
呢?
正态分布在概率和统计中占有重要地位,它广泛存在于自然现象、生产和生活实践之中.在
现实生活中,很多随机变量都服从或近似服从正态分布
例如,某些物理量的测量误差某一地区同年龄人群的身高、体重、肺活量等一定条件下生长
的小麦的株高、穗长、单位面积产量自动流水线生产的各种产品的质量指标(如零件的尺
寸、纤维的纤度、电容器的电容)某地每年7月的平均气温、平均湿度、降水量等
探究2:观察正态曲线及相应的密度函数,你能发现正态曲线的哪些特点?
探究3:观察正态曲线、相应的密度函数及概率的性质,你能发现正态曲线的哪些特点?
二、典例解析
例1:李明上学有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的
时间,经数据分析得到,坐公交车平均用时30min,样本方差为36;骑自行车平均用时34
min,样本方差为4;假设坐公交车用时X和骑自行车用时Y都服从正态分布.
(1)估计X,Y的分布中的参数;
(2)根据(1)中的估计结果,利用信息技术工具画出X和Y的分布密度曲线;
(3)如果某天有38❾加可用,李明应选择哪种交通工具?如果某天只有34min可用,又应
该选择哪种交通工具?请说明理由.
例2.假设某地区高二学生的身高服从正态分布,且均值为170(单位:cm,下同),标准
差为10.在该地区任意抽取一名高二学生,求这名学生的身高:
(1)不高于170的概率;
(2)在区间[160,180]内的概率;
(3)不高于180的概率.
服从正态分布的随机变量在某个区间内取值概率的求解策略
(1)充分利用正态曲线的对称性和曲线与x轴之间面积为1.
(2)注意概率值的求解转化:
①P(X<a)=l-P(X2a);
②P(XWu-a)=P(X2u+a);
(3)熟记P(u-。WXWu+。),P(u-2。WXWu+2o),P(u-3。WXW口+3。)的值.
③若b<u,则P(X〈b)-iP(ub:xwu+b)
跟踪训练1.某厂包装食盐的生产线,正常情况下生产出来的食盐质量服从正态分布
N(5OO,52)(单位:g).该生产线上的检测员某天随机抽取了两包食盐,称得
其质量均大于大于515g.
(1)求正常情况下,任意抽取一包食盐,质量大于515g的概率约为多少;
(2)检测员根据抽检结果,判断出该生产线出现异常,要求立即停产检修,检测员的判断
是否合理?请说明理由.
【达标检测】
1.下列函数是正态分布密度函数的是()
A.f(x)3e*,u,。(。>0)都是实数B.f(x)=^e-;T
2n
1(x-1)2
c.f(x)-^e-r-D.f(x)=~^=e-
2V2TTV2rr
2
2.在某项测量中,测量结果&服从正态分布N(0,。).若g在内取值的概率为
0.1,则g在(0,1)内取值的概率为()
A.0.8B.0.4C.0.2D.0.1
3.某县农民月均收入服从N(500,20)的正态分布,则此县农民月均收入在500元到520元间
人数的百分比约为.
2
4.某种零件的尺寸&(单位:cm)服从正态分布N(3,1),则不属于区间[1,5]这个尺寸范围
的零件数约占总数的.
5.设在一次数学考试中,某班学生的分数X~N(110,20;且知试卷满分150分,这个班的学
生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的
人数.
【课堂小结】
【参考答案】
知识梳理
答案:D
学习过程
一、问题探究
探究1:可用频率分布直方图描述这组误差数据的分布,如右图.所示.频率分布直方图中每
个小矩形的面积表示误差落在相应区间内的频率,所有小矩形的面积之和为1.
观察图形,误差观测值有正有负,并大致对称地分布在X=0的两侧,而且小误差比大误差出
现得更频繁.
随着样本数据量越来越大,让分组越来越多,组距越来越小,由频率的稳定性可知,规率分布
直方图的轮廓就越来越稳定,接近一条光滑的钟形曲线,如右图所示。
根据频率与概率的关系,可用以用上图中的钟型曲线来描述袋装食盐质量误差的概率分布.
任意抽取一袋盐,误差落在[-2,-1]内的概率,可以用图中黄色阴影部分的面积表示.
问题1:正态分布的定义
若随机变量X的概率分布密度函数沏.(X)=——7=-e2,,x£R,
c/2万
即X〜N(O,1).
对任意的xCR,f(x)>0,它的图象在x轴的上方.可以证明x轴和曲线之间的区域的面积为
1.我们称f(x)为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,如上图所示.若
随机变量X的概率分布密度函数为f(x),则称随机变量X服从正态分布(normaldis-
2
tribution),记为X~N(u,。).特别地,当u=0,。=1时,称随机变量X服从标准正态分布.
探究2:由X的密度函数及图像可以发现,正态曲线有以下特点:
(1)曲线在x轴的上方,与x轴不相交.
(2)曲线是单峰的,它关于直线x=u对称.
(3)曲线在x=u处达到峰值焉(最高点)
(4)当|X|无限增大时,曲线无限接近x轴.
(5)X轴与正态曲线所夹面积恒等于1.
探究3:
(1)当。一定时,曲线随着U的变化而沿x轴平移;
⑵当U一定时,曲线的形状由。确定.
。越大,曲线越“矮胖”,表示总体的分布越分散;
。越小,曲线越“瘦高”,表示总体的分布越集中.
正态分布的期望和方差
参数U反映了正态分布的集中位置,。反映了随机变量的分布相对于均值U的
离散程度。
若X~N(〃,/),则E(x尸4,D(X)=/.
二、典例解析
例1:分析:对于第(1)问,正态分布由参数u和。完全确定,根据正态分布参数的意义可
以分别用样本均值和样本标准差来估计.对于第(3)问,这是一个概率决策问题,首先要明确
决策的准则,在给定的时间内选择不迟到概率大的交通工具;然后结合图形,相据概率的表
示,比较概率的大小,作出判断
解:(1)随机变量X的样本均值为30,样本标准差为6;
随机变量Y的样本均值为34,样本标准差为2.
用样本均值估计参数口.用样本标准差估计参数。,可以得到X'N(30,6),Y~N(34,2).
(2)X和Y的分布密度曲线如图所示,
(3)应选择在给定时间内不迟到的概率大的交通工具.
由图可知,Y的密度曲线X的密度曲线P(XW38)〈P(YW38),
P(XP34)>P(YW34).
所以,如果有38min可用,那么骑自行车不迟到的概率大,应选择骑自行车;
如果只有34min可用,那么坐公交车不迟到的概率大,应选择坐公交车,
例2.解:设该学生的身高为X,由题意可知X~N(170.IO?).
(1)P(XW170)=50%,
(2)因为均值为170,标准差为10,而160=170-10,180=170+10,所以
P(160WXW180)=P(|X-1701^10)比68.3%,
(3)由(2)以及正态曲线的对称性可知
P(170WXW180)=P(160WXW180)%|x68.3%=34.15%,
由概率加法公式可知P(XW180)=P(XW170)+P(170WXW180)
亡50%+34.15%=84.15%.
服从正态分布的随机变量在某个区间内取值概率的求解策略
(1)充分利用正态曲线的对称性和曲线与x轴之间面积为1.
(2)注意概率值的求解转化:
①P(X<a)=l-P(X2a);
②P(XWu-a)=P(XNu+a);
⑶熟记P(u-。WXWu+o),P(u-2。WXWu+2o),P(u-3。WXWu+3。)的值.
③若b<口,则P(X<b)-PR
跟踪训练1.解:设正常情况下,该生产线上包装出来的白糖质量为Xg,由题意可知
X〜"(500,52).
(1)由于515=500+3x5,所以根据正态分布的对称性与“3o•原则”可知
11
P(X>515)=-(|X-3x5|>500)*-x0.003=0.0015.
(2)检测员的判断是合理的.因为如果生产线不出现异常的话,由(1)可知,随机抽取两
包检查,质量都小于515g的概率约为0.0015x0.0015=2.25x10-6,
几乎为零,但这样的事件竟然发生了,所以有理由认为生产线出现异常,检测员的判断是
合理的.
达标检测
1.解析:对照正态分布密度函数:f(x)=^-e第(xeR),注意指数中的。和系数的分母
中的。要一致,以及指数部分是一个负数.
答案:B
2
2.解析:•••&服从正态分布N(O,。),...曲线的对称轴是直线x=O.
VP(€<-1)=0.1,.\P(&>1)=0.1.
&在区间(0,1)内取值的概率为0.5-0.1=0.4,故选B.
答案:B
2
3.解析:因为月收入服从正态分布N(500,20),
所以g=500,。=20,y-o=480,y+o=520.
所以月均收入在[480,520]范围内的概率为0.683.
由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.
答案:34.15%
4.解析:零件尺寸属于区间[口-2。,1*+2。],
即零件尺寸在口,5]内取值的概率约为95.4%,
故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4,6%.
答案:4.6%
5.解:u=110,o=20,P(X》90)=P(XT102-20)=P(X-u》-。),
VP(X-g<-o)+P(-oWX-uW。)+P(X-u>。)
«2P(X-u<-o)+0.683=1,
.\P(X-u<-o)=0.1585.
.,.P(X>90)=l-P(X-p<-o)=1-0.1585=0.8415.
.*.54X0,8415弋45(人),即及格人数约为45人.
,/P(X>130)=P(X-ll0>20)=P(X-u>o),
...P(x-u〈-。)+P(-Owx-uW。)+P(x-u>。)弋0.683+2P(x-u>。)=1,
.\P(X-y>o)=0.1585,
即P(X>130)=0.1585.
...54X0.1585g9(人),
即130分以上的人数约为9人.
《7.5正态分布》基础训练
一、选择题
1.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线。为正态分布
N(0』)的密度曲线)的点的个数的估计值为().
A.2386B.2718
C.3413D.4772
2.设随机变量自服从正态分布N(u,。,,&〈1的概率是工,则u等于()
2
A.1B.2C.4D.不确定
3.某省级示范中学对在家学习的100名同学每天的学习时间(小时)进行统计,服从正态分
布N(9,f),则100名同学中,每天学习时间超过10小时的人数为()(四舍五入保
留整数)参考数据:P(〃—b<Z,,〃+<7)=0.6826,
P(〃-2b<Z,,〃+2b)=0.9545,P(〃-3cr<Z„〃+3cr)=0.9973.
A.15B.16C.311).32
4.设乂~刈内,才),Y~N(心灵),这两个正态分布密度曲线如图所示.下列结论中正
确的是()
A.P(Y>p2)>P(Y>^)B.P(XWb2)“(X")
c.对任意正数/,p(x<t)>p(Y<t)D.对任意正数t,p(x>o>p(y>o
[("I
5.(多选题)已知X~N(〃,"),f")=E年xeR,则()
A.曲线y=f(x)与x轴围成的几何图形的面积小于1
B.函数f(x)图象关于直线『对称
C.P(X>JLI-a)=2P(p<Xv〃+cr)+P(X+
D.函数/(外二尸(乂>工)在/?上单调递增
6.(多选题)“杂交水稻之父”袁隆平致力于杂交水稻技术的研究、应用与推广,发明
“三系法”釉型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体
系,为我国粮食安全、农业科学发展和世界粮食供给做出杰出贡献.某水稻种植研究所调
查某地水稻的株高,得出株高(单位:cm)服从正态分布,其密度函数为
](*-100)2
200
0(x)=―i=e-,xe(-oo,+oo),则下列说法正确的是()
10W
A.该地水稻的平均株高为100cm
B.该地水稻株高的方差为10
C.该地水稻株高在120cm以上的数量和株高在8()cm以下的数量一样多
D.随机测量一株水稻,其株高在(80,90)和在(100/10)(单位:cm)的概率一样大
二、填空题
7.设X~N(5,〃),若Xe(5,9)的概率为0.45,则Xe(l,+oo)的概率为
8.已知X〜N(N,。②),且P(X>0)+P(X>-4)=l,则u=—.
9.中长跑是一项对学生身体锻炼价值较高的运动项目.在某校的一次中长跑比赛中,全体
参赛学生的成绩近似地服从正态分布N(80,100),已知成绩在90分以上(含90分)的学
生有32名.则参赛的学生总数约为.
(参考数据:P(〃-b<X<〃+cr)=0.683,P(〃一2CT<X<4+2CT)=0.954,
—3b<X<//+3cr)=0.997)
10.2012年国家开始实行法定节假日高速公路免费通行政策,某收费站在统计了2019年
清明节前后车辆通行数量,发现该站近几天每天通行车辆的数量4服从正态分布
J~N(1000,cr2),若p(g>1200)=a,P(800<1200)=匕,则工+|的最小值为
三、解答题
11.某厂包装白糖的生产线,正常情况下生产出来的白糖质量服从正态分布N(500,5z)
(单位:g).
(1)求正常情况下,任意抽取一包白糖,质量小于485g的概率约为多少?
(2)该生产线上的检测员某天随机抽取了两包白糖,称得其质量均小于485g,检测员根
据抽检结果,判断出该生产线出现异常,要求立即停产检修,检测员的判断是否合理?请
说明理巾.
附:X~N(〃,cr2),则P(〃一<7^卜+0.6826,
P(〃—2c^k〃+2cr)a0.9544,P(〃一3弗族//+3cr)«0.9974.
12.为了解一种植物的生长情况,抽取一批该植物样本测量高度(单位:cm),其频率分
布直方图如图所示.
(1)求该植物样本高度的平均数工和样本方差$2(同一组中的数据用该组区间的中点值作
代表);
(2)假设该植物的高度Z服从正态分布,其中〃近似为样本平均数元〃近似
为样本方差52,利用该正态分布求P(64.5取上96).
附:日^210.5.若2~"(〃,/),则
P(〃一或必〃+<7)笈68.3%,尸(〃一2诚/〃+2b)。95.4%.
答案解析
一、选择题
1.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线。为正态分布
N(0」)的密度曲线)的点的个数的估计值为().
A.2386B.2718
C.3413D.4772
【答案】C
【详解】根据正态分布的性质,P(0<X<1)=1P(-1<X<1)=0.3413,
10000x0.3413=3413.故选C.
2.设随机变量&服从正态分布N(u,。2),&Q的概率是工,则口等于()
2
A.1B.2C.4D.不确定
【答案】A
【详解】由题意,&<1的概率是!,则&>1的概率也是!,,正态分布的图象关于
4=1对称,即〃=1.故选:A
3.某省级示范中学对在家学习的100名同学每天的学习时间(小时)进行统计,服从正态分
布N(9,『),则100名同学中,每天学习时间超过10小时的人数为()(四舍五入保
留整数)参考数据:P(〃—b<Z,,〃+b)=0.6826,
P(N-2(y<Z„p+2cr)=0.9545,—3b<Z,,〃+3cr)=0.9973.
A.15B.16C.31D.32
【答案】B
【详解】根据题意可得:P(Z>10)=P(Z>A+P)=ix(l-0.6826)=0.1587,故所求人数为
100X0.1587=16.
4.设X~N(M,CT:),y~N(必,因),这两个正态分布密度曲线如图所示.下列结论中正
确的是()
A.P(Y>JU2)>P(Y>^)B.P(X<O-2)<P(X<O-,)
C.对任意正数f,P(X<t)>P(Y<t)D.对任意正数f,P(X>t)>P(Y>t)
【答案】C
【详解】由正态分布密度曲线的性质可知,X〜丫〜N(〃2,。;)的密度曲线
分别关于直线x=M,x=%对称,因此结合题中所给图象可得,从<〃2,所以
「(丫三外)〈尸(丫,从),故A错误;又x〜得密度曲线较丫~刈〃2,8)的
密度曲线“瘦高”,所以/<%,所以P(Xw%)>尸(XW/),B错误;对任意正数
t,P(X<t)>P(Y<t),P(X>t)<P(Y>t),C正确,D错误,故选:C
1
5.(多选题)己知X,xeR,则()
A.曲线y=/(x)与X轴围成的几何图形的面积小于1
B.函数/(x)图象关于直线尸M对称
C.P(X>f.t-a)=2P(〃<X<〃+cr)+P(X2〃+cr)
D.函数F(x)=P(X>x)在R上单调递增
【答案】BC
【详解】选项A.曲线丁=/(幻与》轴围成的儿何图形的面积等于1,所以A不正确.
t上
选项B./(x+〃)="7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《传承与创新-武强年画的现代发展探析》
- 2024年建筑材料回收利用合同
- 2024年建筑项目施工监理与质量评估合同
- 2024-2030年羟基苯并三氮唑水合物搬迁改造项目可行性研究报告
- 2024-2030年矿山工程行业市场深度调研及前景趋势与投资研究报告
- 2024-2030年电动卡车电机行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2030年燃气供销公司技术改造及扩产项目可行性研究报告
- 2024-2030年新版中国金晶米黄人造岗石项目可行性研究报告
- 2024-2030年北京市餐饮行业竞争力策略及投资前景展望报告
- 2024-2030年全球及中国静密封垫片行业销售趋势及需求规模预测报告
- 小记者第一课我是一名小记者
- 团结友爱和睦相处主题班会
- 2024年采购部年度工作总结
- 2024年总经理聘任书
- 2024年江苏省中等职业学校学生学业水平考试机械CAD绘图评分表
- 期中 (试题) -2024-2025学年外研版(三起)英语六年级上册
- 中小学教师职业道德规范(2023年修订)全文1500字
- 2024年车路云一体化系统建设与应用指南报告
- 2024年福建省托育服务职业技能竞赛理论考试题库(含答案)
- 2024下半年江苏苏州城市学院招聘管理岗位工作人员27人历年(高频重点提升专题训练)共500题附带答案详解
- 二年级乘除法口算题大全500题(可直接打印)
评论
0/150
提交评论