2024年高中数学专题4-9重难点题型培优精讲等比数列的前n项和公式学生版新人教A版选择性必修第二册_第1页
2024年高中数学专题4-9重难点题型培优精讲等比数列的前n项和公式学生版新人教A版选择性必修第二册_第2页
2024年高中数学专题4-9重难点题型培优精讲等比数列的前n项和公式学生版新人教A版选择性必修第二册_第3页
2024年高中数学专题4-9重难点题型培优精讲等比数列的前n项和公式学生版新人教A版选择性必修第二册_第4页
2024年高中数学专题4-9重难点题型培优精讲等比数列的前n项和公式学生版新人教A版选择性必修第二册_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题4.9等比数列的前n项和公式1.等比数列的前n项和公式若等比数列{}的首项为,公比为q,则等比数列{}的前n项和公式为

=.2.等比数列前n项和公式与指数函数的关系(1)当q=1时,=是关于n的正比例函数,点(n,)是直线y=x上的一群孤立的点.(2)当q≠1时,=.记A=,则=+A是一个指数式与一个常数的和.当q>0且q≠1时,y=是指数函数,此时,点(n,)是指数型函数y=+A图象上的一群孤立的点.3.等比数列前n项和的性质已知等比数列{}的公比为q,前n项和为,则有如下性质:

(1).

(2)若(k)均不为0,则成等比数列,且公比为.

(3)若{}共有2n(n)项,则=q;

若{}共有(2n+1)(n)项,则=q.4.数列求和的常用方法(1)公式法求和

①干脆用等差、等比数列的求和公式.

②驾驭一些常见的数列的前n项和公式.(2)倒序相加法求和

假如一个数列{}中,与首、末两项“等距离”的两项,的和相等,那么求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(3)错位相减法求和

错位相减法求和适用于型数列,其中、分别是等差数列和等比数列.(4)裂项相消法求和

利用裂项相消法求和时,应留意抵消后并不愿定只剩下第一项和最终一项,也有可能前面剩两项,后面剩两项,再就是通项裂项后,有时须要调整前面的系数,使裂项前后保持相等.【题型1求等比数列的通项公式】【方法点拨】依据所给条件,利用等比数列的前n项和,求解等比数列的基本量,即可得解.【例1】(2024·湖北·高二期中)已知在等比数列an中,a3=4,前三项之和S3=12A.an=16C.an=4 D.a【变式1-1】(2024·安徽铜陵·高一期末)各项均为正数的等比数列an,其前n项和为Sn.若a2-a5=-78A.2n B.2n-1【变式1-2】(2024·湖南·高三阶段练习)设正项等比数列an的前n项和为Sn,若2S3=3A.4 B.3 C.2 D.1【变式1-3】(2024·陕西·高二阶段练习)等比数列{an}中,若公比A.4n-1 B.4n【题型2等比数列前n项和的性质】【方法点拨】依据题目条件,结合等比数列前n项和的性质,进行转化求解,即可得解.【例2】等比数列{an}的前n项和为Sn,若S3A.488

B.508

C.511

D.567【变式2-1】(2024·全国·高二)已知等比数列an共有32项,其公比q=3,且奇数项之和比偶数项之和少60,则数列anA.30 B.60 C.90 D.120【变式2-2】(2024·全国·高三专题练习)已知项数为奇数的等比数列{an}A.5 B.7 C.9 D.11【变式2-3】(2024·全国·高三专题练习)已知Sn是等比数列an的前n项和,若存在m∈N*,满足SA.-2 B.2 C.-【题型3求等比数列的前n项和】【方法点拨】依据条件,求出等比数列的基本量,得到首项和公比,利用等比数列的前n项和公式,进行求解即可.【例3】(2024·北京·高三期中)已知等比数列an中,a1=1,且a5+A.15 B.31 C.63 D.64【变式3-1】(2024·天津·高二期末)已知等比数列an的前n项和为Sn,若an>0,公比q>1,a3+A.31 B.36 C.48 D.63【变式3-2】(2024·河北高三阶段练习)设正项等比数列an的前n项和为Sn,若8a1=2A.510 B.511 C.1022 D.1023【变式3-3】(2024·四川·高三期中(理))已知等比数列{an}为递增数列,Sn是它的前n项和,若a3=16,且a2与a4的等差中项为20A.2n-C.4n+【题型4等比数列的应用】【方法点拨】对于等比数列有关的数学文化、实际问题,读懂其中蕴含的数学语言,建立合适的等比数列,利用等比数列的通项公式、求和公式进行求解.【例4】(2024·河南濮阳·高二期末(理))5G是第五代移动通信技术的简称,其意义在于万物互联,即全部人和物都将存在于有机的数字生态系统中,它把以人为中心的通信扩展到同时以人与物为中心的通信,将会为社会生活与生产方式带来巨大的变更.目前我国最高的5G基站海拔6500米.从全国范围看,中国5G发展进入了全面加速阶段,基站建设进度超过预期.现有8个工程队共承建10万个基站,从其次个工程队起先,每个工程队所建的基站数都比前一个工程队少16,则第一个工程队承建的基站数(单位:万)约为(

A.10×6C.80×6【变式4-1】(2024·四川省高三阶段练习(文))中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不犯难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公细致致算相还”.其大意为:“有一人走378里路,第一天健步行走,从其次天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则下列说法正确的是(

)A.该人第五天走的路程为14里B.该人第三天走的路程为42里C.该人前三天共走的路程为330里D.该人最终三天共走的路程为42里【变式4-2】(2024·陕西·模拟预料(文))我国古代数学名著《算法统宗》中有如下问题:“三百七十八里关,初行健步不犯难.次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公细致算相还.”意思是:有一个人要走378里路,第一天走得很快,以后由于脚痛,后一天走的路程都是前一天的一半,6天刚好走完.则此人最终一天走的路程是(

)A.192里 B.96里 C.12里 D.6里【变式4-3】(2024·山东青岛·高二期中)集合论是德国数学家康托尔于十九世纪末创立的,希尔伯特赞誉其为“数学思想的惊人产物,在纯粹理性范畴中人类活动的最美表现之一”.取一条长度为1的线段,将它三等分,去掉中间一段,留下的两段分割三等分,各去掉中间一段,留下更短的四段,……,将这样操作一干脆着下去,直至无穷.由于在不断分割舍弃过程中,所形成的线段的数目越来越多,长度越来越小,在极限状况下,得到一个离散的点集,称为康托尔三分集.若在前n次操作中共去掉的线段长度之和不小于2930,则n的最小值为(

(参考数据:lg2=0.3010,lgA.9 B.8 C.7 D.6【题型5等差、等比数列的综合应用】依据具体条件,借助等差、等比数列的通项公式、性质、求和公式等进行转化求解即可.【例5】(2024·四川·高三期中)已知等差数列an​和等比数列bn​满足a1=b1=1​(1)求an​(2)求和:b1+【变式5-1】(2024·河北·高三阶段练习)已知在等比数列an中,a1+a2=4,且a1,a2+2,a(1)求an(2)设cn=2bn-a【变式5-2】(2024·山西·高三期中)记等差数列an的前n项和为Sn,公差为d,等比数列bn的公比为q(q>0),已知(1)求an,b(2)将an,bn中相同的项剔除后,两个数列中余下的项按从小到大的依次排列,构成数列cn【变式5-3】(2024·黑龙江·高三阶段练习)设等差数列an的前n项和为Sn,已知a1+a3=6,a(1)求数列an与b(2)设cn=3an+54⋅b【题型6数列的求和】【方法点拨】对于具体的数列求和问题,选择合适的数列求和方法,进行求解.【例6】已知数列an的首项a1=1(1)求证:an(2)求数列an的前n项和S【变式6-1】数列an的前n项和Sn满足(1)求数列an(2)若数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论