2025届江苏省靖江市第三中学九上数学期末质量检测试题含解析_第1页
2025届江苏省靖江市第三中学九上数学期末质量检测试题含解析_第2页
2025届江苏省靖江市第三中学九上数学期末质量检测试题含解析_第3页
2025届江苏省靖江市第三中学九上数学期末质量检测试题含解析_第4页
2025届江苏省靖江市第三中学九上数学期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省靖江市第三中学九上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价为元,则可列方程为()A. B.C. D.2.若四边形ABCD是⊙O的内接四边形,且∠A︰∠B︰∠C=1︰3︰8,则∠D的度数是A.10° B.30° C.80° D.120°3.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差和的大小关系是()A.> B.= C.< D.无法确定4.如图,点在线段上,在的同侧作角的直角三角形和角的直角三角形,与,分别交于点,,连接.对于下列结论:①;②;③图中有5对相似三角形;④.其中结论正确的个数是()A.1个 B.2个 C.4个 D.3个5.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或56.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是()A.内含 B.内切 C.相交 D.外切7.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=8.如图,如果从半径为6cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为()A.2cm B.4cm C.6cm D.8cm9.反比例函数图象上的两点为,且,则下列表达式成立的是()A. B. C. D.不能确定10.已知关于的一元二次方程的两根为,,则一元二次方程的根为()A.0,4 B.-3,5 C.-2,4 D.-3,111.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A. B.C. D.12.如图,正五边形ABCDE内接于⊙O,则∠ABD的度数为()A.60° B.72° C.78° D.144°二、填空题(每题4分,共24分)13.如图,点p是∠的边OA上的一点,点p的坐标为(12,5),则tanα=_____.14.已知线段,点是线段的黄金分割点(),那么线段______.(结果保留根号)15.在Rt△ABC中,∠C是直角,sinA=,则cosB=__________16.函数是反比例函数,且图象位于第二、四象限内,则n=____.17.经过点的反比例函数的解析式为__________.18.圆锥的底面半径是1,侧面积是3π,则这个圆锥的侧面展开图的圆心角为________.三、解答题(共78分)19.(8分)化简:.20.(8分)如图,反比例函数y1=与一次函数y2=ax+b的图象交于点A(﹣2,5)和点B(n,l).(1)求反比例函数和一次函数的表达式;(2)请结合图象直接写出当y1≥y2时自变量x的取值范围;(3)点P是y轴上的一个动点,若S△APB=8,求点P的坐标.21.(8分)已知函数,与x成正比例,与x成反比例,且当时,;当时,.求y与x的函数表达式.22.(10分)如图,等边的边长为8,的半径为,点从点开始,在的边上沿方向运动.(1)从点出发至回到点,与的边相切了次;(2)当与边相切时,求的长度.23.(10分)为了测量水平地面上一棵不可攀的树的高度,某学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在与树底端B相距8米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2米,观察者目高CD=1.5米,则树AB的高度.24.(10分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)要使商场平均每天盈利1600元,可能吗?请说明理由.25.(12分)车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.(1)一辆车经过此收费站时,A通道通过的概率为;(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.26.学校准备建一个矩形花圃,其中一边靠墙,另外三边用周长为30米的篱笆围成.已知墙长为18米,设花圃垂直于墙的一边长为x米,花圃的面积为y平方米.(1)求出y与x的函数关系式,并写出x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?

参考答案一、选择题(每题4分,共48分)1、A【分析】设这种台灯上涨了x元,台灯将少售出10x,根据“利润=(售价-成本)×销量”列方程即可.【详解】解:设这种台灯上涨了x元,则根据题意得,

(40+x-30)(600-10x)=10000.故选:A.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.2、D【解析】试题分析:设∠A=x,则∠B=3x,∠C=8x,因为四边形ABCD为圆内接四边形,所以∠A+∠C=180°,即:x+8x=180,∴x=20°,则∠A=20°,∠B=60°,∠C=160°,所以∠D=120°,故选D考点:圆内接四边形的性质3、A【解析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲.【详解】解:由题意可知,乙的数据比甲稳定,所以>故选:A【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、D【分析】如图,设AC与PB的交点为N,根据直角三角形的性质得到,根据相似三角形的判定定理得到△BAE∽△CAD,故①正确;根据相似三角形的性质得到∠BEA=∠CDA,推出△PME∽△AMD,根据相似三角形的性质得到MP•MD=MA•ME,故②正确;由相似三角形的性质得到∠APM=∠DEM=90,根据垂直的定义得到AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,于是得到图中相似三角形有6对,故③不正确.【详解】如图,设AC与PB的交点为N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP•MD=MA•ME,故②正确;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴图中相似三角形有6对,故③不正确;故选:D.【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.5、D【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.6、C【分析】先求两圆半径的和与差,再与圆心距进行比较,确定两圆的位置关系.【详解】解:∵两圆的半径分别是2和4,圆心距是3,

则2+4=6,4-2=2,

∴2<3<6,

圆心距介于两圆半径的差与和之间,两圆相交.故选C.【点睛】本题利用了两圆相交,圆心距的长度在两圆的半径的差与和之间求解.7、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.8、B【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm的圆形纸片剪去圆周的一个扇形,∴剩下的扇形的角度=360°×=240°,∴留下的扇形的弧长=,∴圆锥的底面半径cm;故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.9、D【分析】根据反比例函数图象上点的坐标特征得到,,然后分类讨论:0<<得到;当<0<得到<;当<<0得到.【详解】∵反比例函数图象上的两点为,,∴,∴,,当0<<,;当<0<,<;当<<0,;故选D.【点睛】本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.10、B【分析】先将,代入一元二次方程得出与的关系,再将用含的式子表示并代入一元二次方程求解即得.【详解】∵关于的一元二次方程的两根为,∴或∴整理方程即得:∴将代入化简即得:解得:,故选:B.【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.11、B【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选B.【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.12、B【分析】如图(见解析),先根据正五边形的性质得圆心角的度数,再根据圆周角定理即可得.【详解】如图,连接OA、OE、OD由正五边形的性质得:由圆周角定理得:(一条弧所对圆周角等于其所对圆心角的一半)故选:B.【点睛】本题考查了正五边形的性质、圆周角定理,熟记性质和定理是解题关键.二、填空题(每题4分,共24分)13、【分析】根据题意过P作PE⊥x轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出,代入进行计算求出即可.【详解】解:过P作PE⊥x轴于E,∵P(12,5),∴PE=5,OE=12,∴.故答案为:.【点睛】本题考查锐角三角函数的定义的应用,注意掌握在Rt△ACB中,∠C=90°,则.14、【分析】根据黄金比值为计算即可.【详解】解:∵点P是线段AB的黄金分割点(AP>BP)∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.15、【分析】由题意直接运用直角三角形的边角间关系进行分析计算即可求解得出结论.【详解】解:如图,解:在Rt△ABC中,∵∠C是直角,∴,又∵,∴.【点睛】本题考查直角三角形的边角关系,熟练掌握正弦和余弦所对应的边角关系是解题的关键.16、-1.【分析】根据反比例函数的定义与性质解答即可.【详解】根据反比函数的解析式y=(k≠0),故可知n+1≠0,即n≠-1,且n1-5=-1,解得n=±1,然后根据函数的图像在第二、四三象限,可知n+1<0,解得n<-1,所以可求得n=-1.故答案为:-1【点睛】本题考查反比例函数的定义与性质,熟记定义与性质是解题的关键.17、【分析】设出反比例函数解析式解析式,然后利用待定系数法列式求出k值,即可得解.【详解】设反比例函数解析式为,则,解得:,∴此函数的解析式为.故答案为:.【点睛】本题考查了待定系数法求反比例函数解析式及特殊角的三角函数值,设出函数的表达式,然后把点的坐标代入求解即可,比较简单.18、120°【解析】根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【详解】∵侧面积为3π,∴圆锥侧面积公式为:S=πrl=π×1×l=3π,解得:l=3,∴扇形面积为3π=,解得:n=120,∴侧面展开图的圆心角是120度.故答案为:120°.【点睛】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.三、解答题(共78分)19、【分析】根据完全平方公式和平方差公式,先算整式乘法,再算加减.【详解】解:原式===【点睛】考核知识点:整式乘法.熟记乘法公式是关键.20、(1)y1=﹣,y2=x+6;(2)x≤﹣10或﹣2≤x<0;(3)点P的坐标为(0,4)或(0,1).【分析】(1)先把A点坐标代入y=中求出k得到反比例函数解析式为y=﹣,再利用反比例函数解析式确定B(﹣10,1),然后利用待定系数法求一次解析式;(2)根据图象即可求得;(3)设一次函数图象与y轴的交点为Q,易得Q(0,6),设P(0,m),利用三角形面积公式,利用S△APB=S△BPQ﹣S△APQ得到|m﹣6|×(10﹣2)=1,然后解方程求出m即可得到点P的坐标.【详解】解:(1)把A(﹣2,5)代入反比例函数y1=得k=﹣2×5=﹣10,∴反比例函数解析式为y1=﹣,把B(n,1)代入y1=﹣得n=﹣10,则B(﹣10,1),把A(﹣2,5)、B(﹣10,1)代入y2=ax+b得,解得,∴一次函数解析式为y2=x+6;(2)由图象可知,y1≥y2时自变量x的取值范围是x≤﹣10或﹣2≤x<0;(3)设y=x+6与y轴的交点为Q,易得Q(0,6),设P(0,m),∴S△APB=S△BPQ﹣S△APQ=1,|m﹣6|×(10﹣2)=1,解得m1=4,m2=1.∴点P的坐标为(0,4)或(0,1).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.21、.【分析】分别设出各函数关系式,然后把x、y的值代入求出k的值,再整理即可得解.【详解】解:∵与x成正比例,与x成反比例∴可设=mx,=∴=mx+把时,;时,代入,得解得∴y与x的函数关系式是.22、(1)6;(2)的长度为2或.【分析】(1)由移动过程可知,圆与各边各相切2次;(2)由两种情况,分别构造直角三角形,利用勾股定理求解.【详解】解:(1)由移动过程可知,圆与各边各相切2次,故共相切6次.(2)情况如图,E,F为切点,则O1E=O2F=因为是等边三角形所以∠A=∠C=60°所以∠AO1E=30°所以AE=所以由O1E2+AE2=O1A2得.解得:=2所以AE=1因为AO1E≌CO2F(AAS)所以CF=AE=1所以AF=AC-CF=8-1=7所以,.所以,的长度为2或.【点睛】考核知识点:切线性质.理解切线性质,利用勾股定理求解.23、AB=6米.【分析】根据镜面反射的性质求出△ABE∽△CDE,再根据其相似比解答.【详解】解:根据题意,得∠CDE=∠ABE=90°,∠CED=∠AEB,则△ABE∽△CDE,则,即,解得:AB=6米.答:树AB的高度为6米.【点睛】本题考查相似三角形的应用,应用反射的基本性质,得出三角形相似,运用相似比即可解答.24、(1)每件衬衫应降价1元.(2)不可能,理由见解析【分析】(1)利用衬衣每件盈利×平均每天售出的件数=每天销售这种衬衣利润,列出方程解答即可.

(2)同样列出方程,若方程有实数根则可以,否则不可以.【详解】(1)设每件衬衫应降价x元.

根据题意,得(40-x)(1+2x)=110

整理,得x2-30x+10=0

解得x1=10,x2=1.

∵“扩大销售量,减少库存”,

∴x1=10应略去,

∴x=1.

答:每件衬衫应降价1元.

(2)不可能.理由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论