版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省7月普通高中学九上数学期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+32.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是3.关于抛物线,下列结论中正确的是()A.对称轴为直线B.当时,随的增大而减小C.与轴没有交点D.与轴交于点4.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖5.如图,是抛物线的图象,根据图象信息分析下列结论:①;②;③;④.其中正确的结论是()A.①②③ B.①②④ C.②③④ D.①②③④6.某班的同学想测量一教楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为16米,它的坡度i=1:3.在离C点45米的D处,测得一教楼顶端A的仰角为37°,则一教楼AB的高度约()米(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,A.44.1B.39.8C.36.1D.25.97.抛物线与轴交于、两点,则、两点的距离是()A. B. C. D.8.若均为锐角,且,则().A. B.C. D.9.设,下列变形正确的是()A. B. C. D.10.如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9,以下结论:①⊙O的半径为,②OD∥BE,③PB=,④tan∠CEP=其中正确结论有()A.1个 B.2个 C.3个 D.4个11.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形12.用配方法解方程时,方程可变形为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,用一张半径为10cm的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm,那么这张扇形纸板的弧长是________cm.14.在△ABC中,分别以AB,AC为斜边作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,连接DE.若DE=5,则BC长为_____.15.布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是________.16.(2016湖北省咸宁市)如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为.其中正确的是________(把你认为正确结论的序号都填上).17.如图,边长为的正方形网格中,的顶点都在格点上,则的面积为_______;若将绕点顺时针旋转,则顶点所经过的路径长为__________.18.边心距为的正六边形的半径为_______.三、解答题(共78分)19.(8分)如图①,在平面直角坐标系中,抛物线的对称轴为直线,将直线绕着点顺时针旋转的度数后与该抛物线交于两点(点在点的左侧),点是该抛物线上一点(1)若,求直线的函数表达式(2)若点将线段分成的两部分,求点的坐标(3)如图②,在(1)的条件下,若点在轴左侧,过点作直线轴,点是直线上一点,且位于轴左侧,当以,,为顶点的三角形与相似时,求的坐标20.(8分)如图,在平面直角坐标系中,己知二次函数的图像与y轴交于点B(0,4),与x轴交于点A(-1,0)和点D.(1)求二次函数的解析式;(2)求抛物线的顶点和点D的坐标;(3)在抛物线上是否存在点P,使得△BOP的面积等于?如果存在,请求出点P的坐标?如果不存在,请说明理由.21.(8分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,1.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.22.(10分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数的图象上.(1)求反比例函数的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.23.(10分)李老师将1个黑球和若干个白球放入一个不透明的口袋中并搅匀,让学生进行摸球试验,每次摸出一个球(放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160130203251摸到黑球的频率0.230.210.30_______________(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个黑球的概率是______.(结果都保留小数点后两位)(2)估算袋中白球的个数为________.(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算出两次都摸出白球的概率.24.(10分)如图,正方形中,,点在上运动(不与重台),过点作,交于点,求运动到多长时,有最大值,并求出最大值.25.(12分)如图,锐角三角形中,,分别是,边上的高,垂足为,.(1)证明:.(2)若将,连接起来,则与能相似吗?说说你的理由.26.如图为一机器零件的三视图.(1)请写出符合这个机器零件形状的几何体的名称;(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2)
参考答案一、选择题(每题4分,共48分)1、D【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.2、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数3、B【分析】根据二次函数的图像与性质即可得出答案.【详解】A:对称轴为直线x=-1,故A错误;B:当时,随的增大而减小,故B正确;C:顶点坐标为(-1,-2),开口向上,所以与x轴有交点,故C错误;D:当x=0时,y=-1,故D错误;故答案选择B.【点睛】本题考查的是二次函数,比较简单,需要熟练掌握二次函数的图像与性质.4、B【分析】根据概率的求解方法逐一进行求解即可得.【详解】A.无论一颗质地均匀的骰子多少次,每次抛掷出5点的概率都是,故A错误;B.抛掷一枚图钉,因为图钉质地不均匀,钉尖触地和钉尖朝上的概率不相等,故B正确;C.明天降雨的概率是80%,表示明天有80%的可能性降雨,故C错误D.某种彩票中奖的概率是1%,表明中奖的概率为1%,故D错误故答案为:B.【点睛】本题考查了对概率定义的理解,熟练掌握是解题的关键.5、D【分析】采用数形结合的方法解题,根据抛物线的开口方向,对称轴,与x、y轴的交点,通过推算进行判断.【详解】①根据抛物线对称轴可得,,正确;②当,,根据二次函数开口向下和得,和,所以,正确;③二次函数与x轴有两个交点,故,正确;④由题意得,当和时,y的值相等,当,,所以当,,正确;故答案为:D.【点睛】本题考查了二次函数的性质和判断,掌握二次函数的性质是解题的关键.6、C【解析】延长AB交直线DC于点F,在Rt△BCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角△ADF中利用三角函数求得AF的长,进而求得AB的长.【详解】延长AB交直线DC于点F.∵在Rt△BCF中,BFCF∴设BF=k,则CF=3k,BC=2k.又∵BC=16,∴k=8,∴BF=8,CF=83.∵DF=DC+CF,∴DF=45+83.∵在Rt△ADF中,tan∠ADF=AFDF∴AF=tan37°×(45+83)≈44.13(米),∵AB=AF-BF,∴AB=44.13-8≈36.1米.故选C.【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.7、B【分析】令y=0,求出抛物线与x轴交点的横坐标,再把横坐标作差即可.【详解】解:令,即,解得,,∴、两点的距离为1.故选:B.【点睛】本题考查了抛物线与x轴交点坐标的求法,两点之间距离的表示方法.8、D【解析】根据三角函数的特殊值解答即可.【详解】解:∵∠B,∠A均为锐角,且sinA=,cosB=,
∴∠A=30°,∠B=60°.
故选D.【点睛】本题考查特殊角的三角函数值.9、D【分析】根据比例的性质逐个判断即可.【详解】解:由得,2a=3b,A、∵,∴2b=3a,故本选项不符合题意;
B、∵,∴3a=2b,故本选项不符合题意;
C、,故本选项不符合题意;
D、,故本选项符合题意;
故选:D.【点睛】本题考查了比例的性质,能熟记比例的性质是解此题的关键,如果,那么ad=bc.10、C【解析】试题解析:作DK⊥BC于K,连接OE.∵AD、BC是切线,∴∠DAB=∠ABK=∠DKB=90°,∴四边形ABKD是矩形,∴DK=AB,AD=BK=4,∵CD是切线,∴DA=DE,CE=CB=9,在RT△DKC中,∵DC=DE+CE=13,CK=BC﹣BK=5,∴DK==12,∴AB=DK=12,∴⊙O半径为1.故①错误,∵DA=DE,OA=OE,∴OD垂直平分AE,同理OC垂直平分BE,∴AQ=QE,∵AO=OB,∴OD∥BE,故②正确.在RT△OBC中,PB===,故③正确,∵CE=CB,∴∠CEB=∠CBE,∴tan∠CEP=tan∠CBP===,故④正确,∴②③④正确,故选C.11、B【分析】根据轴对称图形的概念和中心对称图形的概念进行分析判断.【详解】解:选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确.选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B.【点睛】本题考查轴对称图形的概念和中心对称图形的概念,正确理解概念是解题关键.12、D【详解】解:∵2x2+3=7x,∴2x2-7x=-3,∴x2-x=-,∴x2-x+=-+,∴(x-)2=.故选D.【点睛】本题考查解一元二次方程-配方法,掌握配方法的步骤进行计算是解题关键.二、填空题(每题4分,共24分)13、【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.14、1【分析】由在Rt△ABD和Rt△ACE中,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,可证得△ABD∽△ACE,AD=AB,继而可证得△ABC∽△ADE,然后由相似三角形的对应边成比例,求得答案.【详解】∵∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,∴△ABD∽△ACE,AD=AB,∴∠BAD=∠CAE,AB:AC=AD:AE,∴∠BAC=∠DAE,AB:AD=AC:AE,∴△ABC∽△ADE,∴=2,∵DE=5,∴BC=1.故答案为:1.【点睛】此题考查了相似三角形的判定与性质以及含30度角的直角三角形.此题难度适中,注意掌握数形结合思想的应用.15、【解析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可.【详解】解:
红1红2红3白1白2红1--红1红2红1红3红1白1红1白2红2红2红1--红2红3红2白1红2白2红3红3红1红3红2--红3白1红3白2白1白1红1白1红2白1红3--白1白2白2白2红1白2红2白2红3白2白1--∵从布袋里摸出两个球的方法一共有20种,摸到两个红球的方法有6种,∴摸到两个红球的概率是.
故答案为:.【点睛】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.16、①②.【解析】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF.在△BOE与△COF中,∵OB=OC,∠BOE=∠COF,OE=OF,∴△BOE≌△COF,∴BE=CF,∴,①正确;②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=15°,∴△BOG≌△COH,∴OG=OH.∵∠GOH=90°,∴△OGH是等腰直角三角形,②正确;③如图所示,∵△HOM≌△GON,∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=1.设BG=x,则BH=1﹣x,则GH====,∴其最小值为,∴△GBH周长的最小值=GB+BH+GH=1+,D错误.故答案为①②.17、3.5;【分析】(1)利用△ABC所在的正方形的面积减去四周三个直角三角形的面积,列式计算即可得解;(2)根据勾股定理列式求出AC,然后利用弧长公式列式计算即可得解.【详解】(1)△ABC的面积=3×3−×2×3−×1×3−×1×2,=9−3−1.5-1=3.5;(2)由勾股定理得,AC=,所以,点A所经过的路径长为故答案为:3.5;.【点睛】本题考查了利用旋转的性质,弧长的计算,熟练掌握网格结构,求出AC的长是解题的关键.18、8【分析】根据正六边形的性质求得∠AOH=30°,得到AH=OA,再根据求出OA即可得到答案.【详解】如图,正六边形ABCDEF,边心距OH=,∵∠OAB=60°,∠OHA=90°,∴∠AOH=30°,∴AH=OA,∵,∴,解得OA=8,即该正六边形的半径为8,故答案为:8.【点睛】此题考查正六边形的性质,直角三角形30度角的性质,勾股定理,正确理解正六边形的性质是解题的关键.三、解答题(共78分)19、(1);(2)或;(3),,,【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)分和两种情况根据点A、点B在直线y=x+2上列式求解即可;(3)分和两种情况,利用相似三角形的性质列式求解即可.【详解】(1)如图①,设直线AB与x轴的交点为M.
∵∠OPA=45°,
∴OM=OP=2,即M(-2,0).
设直线AB的解析式为y=kx+b(k≠0),将M(-2,0),P(0,2)两点坐标代入,得,
解得,.
故直线AB的解析式为y=x+2;(2)①设(a>0)∵点A、点B在直线y=x+2上和抛物线y=x2的图象上,∴,∴,∴解得,,(舍去)②设(a>0)∵点A、点B在直线y=x+2上和抛物线y=x2的图象上,∴,∴,∴解得:,(舍去)综上或(3),,①此时,关于轴对称,为等腰直角三角形②此时满足,左侧还有也满足,,,四点共圆,易得圆心为中点设,∵且不与重合,为正三角形,过作,则,∵∴∴解得,∴∵∴∴解得,∴综上所述,满足条件的点M的坐标为:,,,.【点睛】本题考查了二次函数综合题.其中涉及到了待定系数法求一次函数解析式,二次函数图象上点的坐标特征,方程思想,难度比较大.另外,解答(2)、(3)题时,一定要分类讨论,做到不重不漏.20、(1);(2)D的坐标为(3,0),顶点坐标为(1,);(3)满足条件的点P有两个,坐标分别为P1(,)、P2().【分析】(1)利用待定系数法求出二次函数解析式即可;
(2)根据二次函数的解析式得点D的坐标,将解析式化为顶点式可得顶点的坐标;
(3)设P的坐标为P(x,y),到y轴的距离为|x|,则S△BOP=•BO•|x|,解出x=±,进而得出P点坐标.【详解】解:(1)把点A(-1,0)和点B(0,4)代入二次函数中得:解得:所以二次函数的解析式为:;(2)根据(1)得点D的坐标为(3,0),=,∴顶点坐标为(1,);(3)存在这样的点P,设P的坐标为P(x,y),到y轴的距离为∣x∣∵S△BOP=•BO•∣x∣∴=×4•∣x∣解得:∣x∣=所以x=±把x=代入中得:即:y=,把x=-代入中得:即:y=-∴满足条件的点P有两个,坐标分别为P1(,)、P2().【点睛】本题考查待定系数法求二次函数解析式、抛物线的顶点坐标以及三角形面积等知识,掌握二次函数的性质、灵活运用待定系数法是解题的关键.21、(1)16,17;(2)14;(3)2.【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【详解】(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案为16,17;(2)14,答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2答:该小区居民一周内使用共享单车的总次数为2次.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.22、(1);(2)P(,0);(3)E(,﹣1),在.【分析】(1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(,﹣3),计算求出S△AOB=××4=.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣,﹣1),即可求解.【详解】(1)∵点A(,1)在反比例函数的图象上,∴k=×1=,∴反比例函数的表达式为;(2)∵A(,1),AB⊥x轴于点C,∴OC=,AC=1,由射影定理得=AC•BC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.设点P的坐标为(m,0),∴×|m|×1=,∴|m|=,∵P是x轴的负半轴上的点,∴m=﹣,∴点P的坐标为(,0);(3)点E在该反比例函数的图象上,理由如下:∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)=,∴点E在该反比例函数的图象上.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转.23、表格内数据:0.26,0.25,0.25(1)0.25;(2)1;(1).【分析】(1)直接利用频数÷总数=频率求出答案;(2)设袋子中白球有x个,利用表格中数据估算出得到黑球的频率列出关于x的分式方程,【详解】(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近0.25,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,=0.25,x=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新型城镇化建设投资合同
- 2024年技术开发合同:生物制药
- 2024年度环保设备维修与保养合同
- 2024年度网站UI设计开发合同
- 2024年房地产项目开发与建设合同
- 2024年度房屋买卖合同详细描述房屋信息和交易流程
- 2024年技术研发与信息共享协议
- 2023年橡胶助剂项目评价分析报告
- 描写兔的作文三篇
- 2024年度虚拟现实视觉设计合同
- 雅鲁藏布江大拐弯巨型水电站规划方案
- 广西基本医疗保险门诊特殊慢性病申报表
- 城市经济学习题与答案
- 国开成本会计第14章综合练习试题及答案
- 幼儿园大班科学:《树叶为什么会变黄》课件
- 1到50带圈数字直接复制
- 铁路工程施工组织设计(施工方案)编制分类
- 幼儿园中班数学《有趣的图形》课件
- 《规划每一天》教案2021
- 草莓创意主题实用框架模板ppt
- 山大口腔颌面外科学课件第5章 口腔种植外科-1概论、口腔种植的生物学基础
评论
0/150
提交评论