2025届北京市第35中学九年级数学第一学期期末考试模拟试题含解析_第1页
2025届北京市第35中学九年级数学第一学期期末考试模拟试题含解析_第2页
2025届北京市第35中学九年级数学第一学期期末考试模拟试题含解析_第3页
2025届北京市第35中学九年级数学第一学期期末考试模拟试题含解析_第4页
2025届北京市第35中学九年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市第35中学九年级数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知点A(﹣3,a),B(﹣2,b),C(1,c)均在抛物线y=3(x+2)2+k上,则a,b,c的大小关系是()A.c<a<b B.a<c<b C.b<a<c D.b<c<a2.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A. B. C. D.3.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()。A.πr2 B.πr2 C.πr2 D.πr24.用配方法解方程,下列配方正确的是()A. B.C. D.5.如图,是的直径,,是上的两点,且平分,分别与,相交于点,,则下列结论不一定成立的是()A. B. C. D.6.已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数y=-的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y17.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长 B.逐渐变短C.长度不变 D.先变短后变长8.如图,▱ABCD的对角线AC,BD相交于点O,且AC=10,BD=12,CD=m,那么m的取值范围是()A.10<m<12 B.2<m<22 C.5<m<6 D.1<m<119.下图中几何体的左视图是()A. B. C. D.10.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A. B. C. D.11.如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400D.(80+x)(50+2x)=540012.如图,点B,C,D在⊙O上,若∠BCD=30°,则∠BOD的度数是()A.75° B.70° C.65° D.60°二、填空题(每题4分,共24分)13.已知二次函数的顶点坐标为,且与轴一个交点的横坐标为,则这个二次函数的表达式为__________.14.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.15.如图,正三角形AFG与正五边形ABCDE内接于⊙O,若⊙O的半径为3,则的长为______________.16.(2016广东省茂名市)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是__________.17.将一副三角尺如图所示叠放在一起,则的值是.18.若m﹣=3,则m2+=_____.三、解答题(共78分)19.(8分)为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.学生垃圾类别厨余垃圾√√√√√√√√可回收垃圾√×√××√√√有害垃圾×√×√√××√其他垃圾×√√××√√√(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.20.(8分)近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:,A区域所对应的扇形圆心角为度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?21.(8分)如图,直线y=x﹣3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=﹣x2+mx+n与x轴的另一个交点为A,顶点为P.(1)求3m+n的值;(2)在该抛物线的对称轴上是否存在点Q,使以C,P,Q为顶点的三角形为等腰三角形?若存在,求出有符合条件的点Q的坐标;若不存在,请说明理由.(3)将该抛物线在x轴上方的部分沿x轴向下翻折,图象的其余部分保持不变,翻折后的图象与原图象x轴下方的部分组成一个“M“形状的新图象,若直线y=x+b与该“M”形状的图象部分恰好有三个公共点,求b的值.22.(10分)如图,抛物线交轴于两点,交轴于点,点的坐标为,直线经过点.(1)求抛物线的函数表达式;(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;(3)过点的直线交直线于点,连接当直线与直线的一个夹角等于的2倍时,请直接写出点的坐标.23.(10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)24.(10分)如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.25.(12分)解方程:(1)x2﹣4x+2=0;(2)26.如图,在中,.以为直径的与交于点,与交于点,点在边的延长线上,且.(1)试说明是的切线;(2)过点作,垂足为.若,,求的半径;(3)连接,设的面积为,的面积为,若,,求的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】通过确定A、B、C三个点和函数对称轴的距离,确定对应y轴的大小.【详解】解:函数的对称轴为:x=﹣2,a=3>0,故开口向上,x=1比x=﹣3离对称轴远,故c最大,b为函数最小值,故选:C.【点睛】本题主要考查了二次函数的性质,能根据题意,巧妙地利用性质进行解题是解此题的关键2、A【分析】从1到9这9个自然数中,既是2的倍数,又是3的倍数只有6一个,所以既是2的倍数,又是3的倍数的概率是九分之一.【详解】解:∵既是2的倍数,又是3的倍数只有6一个,∴P(既是2的倍数,又是3的倍数)=.故选:A.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.3、D【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,然后计算扇形面积就可.【详解】连接OC、OD.∵点C,D为半圆的三等分点,AB=1r,∴∠AOC=∠BOD=∠COD=180°÷3=60°,OA=r.∵OC=OD,∴△COD是等边三角形,∴∠OCD=60°,∴∠OCD=∠AOC=60°,∴CD∥AB,∴△COD和△CDA等底等高,∴S△COD=S△ACD,∴阴影部分的面积=S扇形CODπr1.故选D.【点睛】本题考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题的关键.4、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:等式两边同时加上一次项系数的绝对值一半的平方22,,∴;故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5、C【分析】由圆周角定理和角平分线得出,,由等腰三角形的性质得出,得出,证出,选项A成立;由平行线的性质得出,选项B成立;由垂径定理得出,选项D成立;和中,没有相等的边,与不全等,选项C不成立,即可得出答案.【详解】∵是的直径,平分,∴,,∴,∵,∴,∴,∴,选项A成立;∴,选项B成立;∴,选项D成立;∵和中,没有相等的边,∴与不全等,选项C不成立,故选C.【点睛】本题考查了圆周角定理,垂径定理,等腰三角形的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌圆周角定理和垂径定理.6、C【分析】根据反比例函数为y=-,可得函数图象在第二、四象限,在每个象限内,y随着x的增大而增大,进而得到y1,y2,y3的大小关系.【详解】解:∵反比例函数为y=-,∴函数图象在第二、四象限,在每个象限内,y随着x的增大而增大,又∵x1<x2<0<x3,∴y1>0,y2>0,y3<0,且y1<y2,∴y3<y1<y2,故选:C.【点睛】本题主要考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.7、A【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【详解】当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A.【点睛】此题考查了中心投影的性质,解题关键是了解人从路灯下走过的过程中,人与灯之间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.8、D【分析】先根据平行四边形的性质,可得出OD、OC的长,再根据三角形三边长关系得出m的取值范围.【详解】∵四边形ABCD是平行四边形,AC=10,BD=12∴OC=5,OD=6∴在△OCD中,OD-OC<CD<OD+OC,即1<m<11故选:D.【点睛】本题考查平行四边形的性质和三角形三边长关系,解题关键是利用平行四边形的性质,得出OC和OD的长.9、D【分析】根据左视图是从左面看到的图形,即可.【详解】从左面看从左往右的正方形个数分别为1,2,故选D.【点睛】本题主要考查几何体的三视图,理解左视图是从左面看到的图形,是解题的关键.10、D【解析】试题分析:根据三视图中,从左边看得到的图形是左视图,因此从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D考点:简单组合体的三视图11、B【详解】根据题意可得整副画的长为(80+2x)cm,宽为(50+2x)cm,则根据长方形的面积公式可得:(80+2x)(50+2x)=1.故应选:B考点:一元二次方程的应用12、D【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.【详解】∵∠BCD=30°,∴∠BOD=2∠BCD=2×30°=60°.故选:D.【点睛】本题考查了圆的角度问题,掌握圆周角定理是解题的关键.二、填空题(每题4分,共24分)13、【分析】已知抛物线的顶点坐标,则可设顶点式,把(3,0)代入求出的值即可.【详解】设二次函数的解析式为,∵抛物线与轴一个交点的横坐标为,则这个点的坐标为:(3,0),∴将点(3,0)代入二次函数的解析式得,解得:,∴这个二次函数的解析式为:,故答案为:【点睛】本题主要考查了用待定系数法求二次函数解析式,在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.14、4.8或【分析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以=,即=,解得t=.综上所述,当t=4.8或时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.15、【分析】连接OB,OF,根据正五边形和正三角形的性质求出∠BAF=24°,再由圆周角定理得∠BOF=48°,最后由弧长公式求出的长.【详解】解:连接OB,OF,如图,根据正五边形、正三角形和圆是轴对称图形可知∠BAF=∠EAG,∵△AFG是等边三角形,∴∠FAG=60°,∵五边形ABCDE是正五边形,∴∠BAE=,∴∠BAF=∠EAG=(∠BAE-∠FAG)=×(108°-60°)=24°,∴∠BOF=2∠BAF=2×24°=48°,∵⊙O的半径为3,∴的弧长为:故答案为:【点睛】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.16、.【解析】试题分析:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).考点:(1)坐标与图形变化-旋转;(2)一次函数图象与几何变换17、【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.18、1【分析】根据完全平方公式,把已知式子变形,然后整体代入求值计算即可得出答案.【详解】解:∵=m2﹣2+=9,∴m2+=1,故答案为1.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的变形.三、解答题(共78分)19、(1)8名学生中至少有三类垃圾投放正确的概率为;(2)列表见解析.【解析】直接利用概率公式求解可得;

抽取两人接受采访,故利用列表法可得所有等可能结果.【详解】解:(1)8名学生中至少有三类垃圾投放正确有5人,故至少有三类垃圾投放正确的概率为;(2)列表如下:【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比.20、(1)32,1;(2)500人;(3)补图见解析;(4)5.88万人.【解析】分析:分析:(1)用1减去A,D,B,E的百分比即可,运用A的百分比乘360°即可.(2)用不关心的人数除以对应的百分比可得.(3)求出25-35岁的人数再绘图.(4)用14万市民乘C与D的百分比的和求解.本题解析:(1)m%=1-33%-20%-5%-10%=32%,所以m=32,A区域所对应的扇形圆心角为:360°×20%=1°,故答案为32,1.(2)一共调查的人数为:25÷5%=500(人).(3)(3)500×(32%+10%)=210(人)25−35岁的人数为:210−10−30−40−70=60(人)(4)14×(32%+10%)=5.88(万人)答:估计本地市民中会有5.88万人给出建议.21、(1)9;(2)点Q的坐标为(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)b=﹣3或﹣.【分析】(1)求出B、C的坐标,将点B、C的坐标分别代入抛物线表达式,即可求解;(2)分CP=PQ、CP=CQ、CQ=PQ,分别求解即可;(3)分两种情况,分别求解即可.【详解】解:(1)直线y=x﹣3,令y=0,则x=3,令x=0,则y=﹣3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标分别代入抛物线表达式得:,解得:,则抛物线的表达式为:y=﹣x2+4x﹣3,则点A坐标为(1,0),顶点P的坐标为(2,1),3m+n=12﹣3=9;(2)①当CP=CQ时,C点纵坐标为PQ中点的纵坐标相同为﹣3,故此时Q点坐标为(2,﹣7);②当CP=PQ时,∵PC=,∴点Q的坐标为(2,1﹣)或(2,1+);③当CQ=PQ时,过该中点与CP垂直的直线方程为:y=﹣x﹣,当x=2时,y=﹣,即点Q的坐标为(2,﹣);故:点Q的坐标为(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)图象翻折后的点P对应点P′的坐标为(2,﹣1),①在如图所示的位置时,直线y=x+b与该“M”形状的图象部分恰好有三个公共点,此时C、P′、B三点共线,b=﹣3;②当直线y=x+b与翻折后的图象只有一个交点时,此时,直线y=x+b与该“M”形状的图象部分恰好有三个公共点;即:x2﹣4x+3=x+b,△=52﹣4(3﹣b)=0,解得:b=﹣.即:b=﹣3或﹣.【点睛】本题考查的是二次函数综合运用,涉及的知识点有待定系数法求二次函数解析式,一次函数的图像与性质,勾股定理,等腰三角形的定义,二次函数的翻折变换及二次函数与一元二次方程的关系.难点在于(3),关键是通过数形变换,确定变换后图形与直线的位置关系,难度较大.本题也考查了分类讨论及数形结合的数学思想.22、(1);(2)当时,有最大值,最大值为,点坐标为;(3)点的坐标或.【分析】(1)利用点B的坐标,用待定系数法即可求出抛物线的函数表达式;(2)如图1,过点P作轴,交BC于点H,设,H,求出的面积即可求解;(3)如图2,作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于,交AC于E,利用等腰三角形的性质和三角形外角性质得到,再确定N(3,−2),AC的解析式为y=5x−5,E点坐标为,利用两直线垂直的问题可设直线的解析式为,把E代入求出b,得到直线的解析式为,则解方程组得点的坐标;作点关于N点的对称点,利用对称性得到,设,根据中点坐标公式得到,然后求出x即可得到的坐标,从而得到满足条件的点M的坐标.【详解】(1)把代入得;(2)过点P作轴,交BC于点H,设,则点H的坐标为,∴,∴,∴当时,有最大值,最大值为,此时点坐标为.(3)作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于,交AC于E,∵,

∴,

∴,

∵△ANB为等腰直角三角形,

∴,

∴N(3,−2),

由可得AC的解析式为y=5x−5,E点坐标为,

设直线的解析式为,把E代入得,解得,

∴直线的解析式为,

解方程组得,则;

如图2,在直线BC上作点关于N点的对称点,则,设,

∵,

∴,

∴,

综上所述,点M的坐标为或.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、会利用待定系数法求函数解析式,会运用分类讨论的思想解决数学问题.23、(5)(60≤x≤76);(6)当销售单价定为76元时,每月可获得最大利润,最大利润是6560元;(7)5.【分析】(5)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(6)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;(7)根据抛物线的性质和图象,求出每月的成本.【详解】解:(5)由题意,得:w=(x﹣60)•y=(x﹣60)•(﹣50x+500)=,即(60≤x≤76);(6)对于函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论