湖南省永州市名校2025届数学九上期末经典试题含解析_第1页
湖南省永州市名校2025届数学九上期末经典试题含解析_第2页
湖南省永州市名校2025届数学九上期末经典试题含解析_第3页
湖南省永州市名校2025届数学九上期末经典试题含解析_第4页
湖南省永州市名校2025届数学九上期末经典试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省永州市名校2025届数学九上期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,抛物线与轴交于点,与轴的负半轴交于点,点是对称轴上的一个动点.连接,当最大时,点的坐标是()A. B. C. D.2.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<13.关于x的方程x2﹣mx+6=0有一根是﹣3,那么这个方程的另一个根是()A.﹣5 B.5 C.﹣2 D.24.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法中不正确的是()A.当1<a<5时,点B在⊙A内B.当a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外5.如图,滑雪场有一坡角α为20°的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为()A.200tan20°米 B.米 C.200sin20°米 D.200cos20°米6.已知二次函数y=x2+2x-m与x轴没有交点,则m的取值范围是()A.m<-1 B.m>-1 C.m<-1且m≠0 D.m>-1且m≠07.已知关于的方程,若,则该方程一定有一个根为()A.-1 B.0 C.1 D.1或-18.如图,已知直线与轴交于点,与轴交于点,将沿直线翻折后,设点的对应点为点,双曲线经过点,则的值为()A.8 B.6 C. D.9.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠D=110°,则∠AOC的度数为()A.130° B.135° C.140° D.145°10.在平面直角坐标系中,抛物线与轴交于点,与轴交于点,则的面积是()A.6 B.10 C.12 D.1511.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个 B.16个 C.20个 D.30个12.已知二次函数y=ax2+bx+c的图象如图所示,下列结i论:①abc>1;②b2﹣4ac>1;③2a+b=1;④a﹣b+c<1.其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.点A(﹣5,y1),B(3,y2)都在双曲线y=,则y1,y2的大小关系是_____.14.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.15.若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是______.16.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为_____cm.17.计算:sin260°+cos260°﹣tan45°=________.18.如图,直线交轴于点B,交轴于点C,以BC为边的正方形ABCD的顶点A(-1,a)在双曲线上,D点在双曲线上,则的值为_______.三、解答题(共78分)19.(8分)如图1,我们已经学过:点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某校的数学拓展性课程班,在进行知识拓展时,张老师由黄金分割点拓展到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D.(1)证明点D是AB边上的黄金分割点;(2)证明直线CD是△ABC的黄金分割线.20.(8分)平行四边形的对角线相交于点,的外接圆交于点且圆心恰好落在边上,连接,若.(1)求证:为切线.(2)求的度数.(3)若的半径为1,求的长.21.(8分)已知抛物线y=x2+mx+n与x轴交于点A(﹣1,0),B(2,0)两点.(1)求抛物线的解析式;(2)当y<0时,直接写出x的取值范围是.22.(10分)如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,交y轴于点C,已知A(﹣1,0)对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若AOC与BMN相似,请求出t的值;②BOQ能否为等腰三角形?若能,求出t的值.23.(10分)已知关于x的一元二次方程2x2+(2k+1)x+k=1.(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k的取值范围.24.(10分)某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?25.(12分)某企业生产并销售某种产品,整理出该商品在第()天的售价与函数关系如图所示,已知该商品的进价为每件30元,第天的销售量为件.(1)试求出售价与之间的函数关系是;(2)请求出该商品在销售过程中的最大利润;(3)在该商品销售过程中,试求出利润不低于3600元的的取值范围.26.某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕表示)

参考答案一、选择题(每题4分,共48分)1、D【分析】先根据题意求出点A、点B的坐标,A(0,-3),B(-1,0),抛物线的对称轴为x=1,根据三角形三边的关系得≤AB,当ABM三点共线时取等号,即M点是x=-1与直线AB的交点时,最大.求出点M的坐标即可.【详解】解:根据三角形三边的关系得:≤AB,当ABM三点共线时取等号,当三点共线时,最大,则直线与对称轴的交点即为点.由可知,,对称轴设直线为.故直线解析式为当时,.故选:.【点睛】本题考查了三角形三边关系的应用,及二次函数的性质应用.找到三点共线时最大是关键,2、A【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.3、C【分析】根据两根之积可得答案.【详解】设方程的另一个根为a,∵关于x的方程x2﹣mx+6=0有一根是﹣3,∴﹣3a=6,解得a=﹣2,故选:C.【点睛】本题主要考查了根与系数的关系,一元二次方程的根与系数的关系:若方程两个为,,则.4、B【解析】试题解析:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项A、C、D正确,选项B错误.故选B.点睛:若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.5、C【解析】解:∵sin∠C=,∴AB=AC•sin∠C=200sin20°.故选C.6、A【分析】函数y=x2+2x-m的图象与x轴没有交点,用根的判别式:△<0,即可求解.【详解】令y=0,即:x2+2x-m=0,△=b2−4ac=4+4m<0,即:m<-1,故选:A.【点睛】本题考查的是二次函数图象与x轴的交点,此类题目均是利用△=b2−4ac和零之间的关系来确定图象与x轴交点的数目,即:当△>0时,函数与x轴有2个交点,当△=0时,函数与x轴有1个交点,当△<0时,函数与x轴无交点.7、C【分析】由题意将变形为并代入原方程左边,再将方程左边因式分解即可.【详解】解:依题意得,原方程化为,即,∴,∴为原方程的一个根.故选:C.【点睛】本题考查一元二次方程解的定义.注意掌握方程的解是使方程左右两边成立的未知数的值.8、A【分析】作轴于,轴于,设.依据直线的解析式即可得到点和点的坐标,进而得出,,再根据勾股定理即可得到,进而得出,即可得到的值.【详解】解:作轴于,轴于,如图,设,当时,,则,当时,,解得,则,∵沿直线翻折后,点的对应点为点,∴,,在中,,①在中,,②①-②得,把代入①得,解得,∴,∴,∴.故选A.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数(为常数,)的图象是双曲线,图象上的点的横纵坐标的积是定值,即.9、C【分析】根据“圆内接四边形的对角互补”,由∠D可以求得∠B,再由圆周角定理可以求得∠AOC的度数.【详解】解:∵∠D=110°,∴∠B=180°﹣110°=70°,∴∠AOC=2∠B=140°,故选C.【点睛】本题考查圆周角定理及圆内接四边形的性质,熟练掌握有关定理和性质的应用是解题关键.10、A【分析】根据题意,先求出点A、B、C的坐标,然后根据三角形的面积公式,即可求出答案.【详解】解:∵抛物线与轴交于点,∴令,则,解得:,,∴点A为(1,0),点B为(,0),令,则,∴点C的坐标为:(0,);∴AB=4,OC=3,∴的面积是:=;故选:A.【点睛】本题考查了二次函数与坐标轴的交点,解题的关键是熟练掌握二次函数的性质,求出抛物线与坐标轴的交点.11、A【解析】∵共摸了40次,其中10次摸到黑球,∴有10次摸到白球.∴摸到黑球与摸到白球的次数之比为1:1.∴口袋中黑球和白球个数之比为1:1.∴4×1=12(个).故选A.考点:用样本估计总体.12、C【分析】首先根据开口方向确定a的取值范围,根据对称轴的位置确定b的取值范围,根据抛物线与y轴的交点确定c的取值范围,根据抛物线与x轴是否有交点确定b2﹣4ac的取值范围,根据x=﹣1函数值可以判断.【详解】解:抛物线开口向下,,对称轴,,抛物线与轴的交点在轴的上方,,,故①错误;抛物线与轴有两个交点,,故②正确;对称轴,,,故③正确;根据图象可知,当时,,故④正确;故选:.【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.二、填空题(每题4分,共24分)13、y1<y1【分析】根据反比例函数图象上的点的坐标满足函数解析式,即可得到y1,y1的值,进而即可比较大小.【详解】∵点A(﹣5,y1),B(3,y1)都在双曲线y=上,当x=﹣5时,y1=﹣,当x=3时,y1=,∴y1<y1.故答案是:y1<y1.【点睛】本题主要考查反比例函数图象上点的纵坐标大小比较,掌握反比例函数图象上的点的坐标满足函数解析式,是解题的关键.14、2【详解】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,解得r=2cm.考点:圆锥侧面展开扇形与底面圆之间的关系.15、1【解析】试题解析:∵a是一元二次方程x2-1x+m=0的一个根,-a是一元二次方程x2+1x-m=0的一个根,∴a2-1a+m=0①,a2-1a-m=0②,①+②,得2(a2-1a)=0,∵a>0,∴a=1.考点:一元二次方程的解.16、1【分析】根据扇形面积公式和扇形的弧长公式之间的关系:S扇形,把对应的数值代入即可求得半径r的长.【详解】解:∵S扇形,∴,∴.故答案为1.【点睛】本题考查了扇形面积和弧长公式之间的关系,解此类题目的关键是掌握住扇形面积公式和扇形的弧长公式之间的等量关系:S扇形.17、0【分析】将特殊角的三角函数值代入求解.【详解】.故答案为.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18、6【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.【详解】∵A(−1,a)在反比例函数y=上,∴a=2,∴A(−1,2),∵点B在直线y=kx−1上,∴B(0,−1),∴AB=,∵四边形ABCD是正方形,∴BC=AB=,设B(m,0),∴,∴m=−3(舍)或m=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),将点D的坐标代入反比例函数y=中,∴k=6故答案为:6.【点睛】本题主要考察反比例函数与一次函数的交点问题,解题突破口是确定出点A的坐标.三、解答题(共78分)19、(1)详见解析;(2)详见解析.【分析】(1)证明AD=CD=BC,证明△BCD∽△BCA,得到.则有,所以点D是AB边上的黄金分割点;(2)证明,直线CD是△ABC的黄金分割线;【详解】解:(1)点D是AB边上的黄金分割点.理由如下:AB=AC,∠A=,∠B=∠ACB=.CD是角平分线,∠ACD=∠BCD=,∠A=∠ACD,AD=CD.∠CDB=180-∠B-∠BCD=,∠CDB=∠B,BC=CD.BC=AD.在△BCD与△BCA中,∠B=∠B,∠BCD=∠A=,△BCD∽△BCA,点D是AB边上的黄金分割点.(2)直线CD是△ABC的黄金分割线.理由如下:设ABC中,AB边上的高为h,则,,,由(1)得点D是AB边上的黄金分割点,,直线CD是△ABC的黄金分割线【点睛】本题主要考查三角想相似及相似的性质,注意与题中黄金分割线定义相结合解题.20、(1)详见解析;(2);(3)【分析】(1)连接OB,根据平行四边形的性质得到∠BAD=∠BCD=45°,根据圆周角定理得到∠BOD=2∠BAD=90°,根据平行线的性质得到OB⊥BC,即可得到结论;(2)连接OM,根据平行四边形的性质得到BM=DM,根据直角三角形的性质得到OM=BM,求得∠OBM=60°,于是得到∠ADB=30°;(3)连接EM,过M作MF⊥AE于F,根据等腰三角形的性质得到∠MOF=∠MDF=30°,根据OM=OE=1,解直角三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM=BM,∵OB=OM,∴OB=OM=BM,∴∠OBM=60°,∴∠ADB=30°;(3)解:连接EM,过M作MF⊥AE于F,∵OM=DM,∴∠MOF=∠MDF=30°,∵的半径为1∴OM=OE=1,∴FM=,OF=,∴EF=1−故EM==.【点睛】本题考查了切线的判定,圆周角定理,平行四边形的性质,等腰直径三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.21、(1)y=x1﹣x﹣1;(1)﹣1<x<1.【分析】(1)利用待定系数法确定函数关系式;(1)结合函数图象解答.【详解】解:(1)把A(﹣1,0),B(1,0)分别代入y=x1+mx+n,得.解得.故该抛物线解析式是:y=x1﹣x﹣1;(1)由题意知,抛物线y=x1﹣x﹣1与x轴交于点A(﹣1,0),B(1,0)两点,且开口方向向上,所以当y<0时,x的取值范围是﹣1<x<1.故答案是:﹣1<x<1.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法求解析式.22、(1);;(2)①t=1;②当秒或秒时,△BOQ为等腰三角形.【分析】(1)将A、B点的坐标代入y=﹣x2+bx+c中,即可求解;(2)①△AOC与△BMN相似,则或,即可求解;②分OQ=BQ,BO=BQ,OQ=OB三种情况,分别求解即可;【详解】(1)∵A(﹣1,0),函数对称轴是直线x=1,∴,把A、B两点代入y=﹣x2+bx+c中,得:,解得,∴抛物线的解析式为,∴C点的坐标为.(3)①如下图,,△AOC与△BMN相似,则或,即或,解得或或3或1(舍去,,3),故t=1.②∵,轴,∴,∵△BOQ为等腰三角形,∴分三种情况讨论:第一种:当OQ=BQ时,∵,∴OM=MB,∴,∴;第二种:当BO=BQ时,在Rt△BMQ中,∵,∴,即,∴;第三种:当OQ=OB时,则点Q、C重合,此时t=0,而,故不符合题意;综上所述,当秒或秒时,△BOQ为等腰三角形.【点睛】本题主要考查了二次函数的综合,准确分析求解是做题的关键.23、(1)见解析;(2)【分析】(1)根据根的判别式判断即可△>1,有两个实数根;△=1,有一个实数根;△<1,无实数根.(2)根据求根公式求出两个根,根据一个根是正数判断k的取值范围即可.【详解】(1)证明:由题意,得∵,∴方程总有两个实数根.(2)解:由求根公式,得,.∵方程有一个根是正数,∴.∴.【点睛】此题主要考查了一元二次方程根的判别式及求根公式,熟记概念是解题的关键.24、(1)y=﹣2x+260;(2)销售单价为80元;(3)销售单价为90元时,每天获得的利润最大,最大利润是3200元.【分析】(1)由待定系数法可得函数的解析式;

(2)根据利润等于每件的利润乘以销售量,列方程可解;

(3)设每天获得的利润为w元,由题意得二次函数,写成顶点式,可求得答案.【详解】(1)设y=kx+b(k≠0,b为常数)将点(50,160),(80,100)代入得解得∴y与x的函数关系式为:y=﹣2x+260(2)由题意得:(x﹣50)(﹣2x+260)=3000化简得:x2﹣180x+8000=0解得:x1=80,x2=100∵x≤50×(1+90%)=95∴x2=100>95(不符合题意,舍去)答:销售单价为80元.(3)设每天获得的利润为w元,由题意得w=(x﹣50)(﹣2x+260)=﹣2x2+360x﹣13000=﹣2(x﹣90)2+3200∵a=﹣2<0,抛物线开口向下∴w有最大值,当x=90时,w最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是32

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论