湖南省长沙市雨花区广益实验中学2025届九年级数学第一学期期末监测模拟试题含解析_第1页
湖南省长沙市雨花区广益实验中学2025届九年级数学第一学期期末监测模拟试题含解析_第2页
湖南省长沙市雨花区广益实验中学2025届九年级数学第一学期期末监测模拟试题含解析_第3页
湖南省长沙市雨花区广益实验中学2025届九年级数学第一学期期末监测模拟试题含解析_第4页
湖南省长沙市雨花区广益实验中学2025届九年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市雨花区广益实验中学2025届九年级数学第一学期期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图所示,线段与交于点,下列条件中能判定的是()A.,,, B.,,,C.,,, D.,,,2.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=40°,则∠BAD的大小为()A.60º B.30º C.45º D.50º3.下列关系式中,y是x的反比例函数的是()A.y=4x B. C. D.4.下列说法正确的是()A.经过三点可以做一个圆 B.平分弦的直径垂直于这条弦C.等弧所对的圆心角相等 D.三角形的外心到三边的距离相等5.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为()A. B. C. D.6.将抛物线通过一次平移可得到抛物线.对这一平移过程描述正确的是()A.沿x轴向右平移3个单位长度 B.沿x轴向左平移3个单位长度C.沿y轴向上平移3个单位长度 D.沿y轴向下平移3个单位长度7.若二次函数y=-x2+px+q的图像经过A(,n)、B(0,y1)、C(,n)、D(,y2)、E(,y3),则y1、y2、y3的大小关系是()A.y3<y2<y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y18.某闭合并联电路中,各支路电流与电阻成反比例,如图表示该电路与电阻的函数关系图象,若该电路中某导体电阻为,则导体内通过的电流为()A. B. C. D.9.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣110.下列根式中属于最简二次根式的是()A. B.C. D.11.一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是()A.6个 B.7个 C.8个 D.9个12.方程的解是()A. B., C., D.二、填空题(每题4分,共24分)13.将二次函数y=2x2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.14.在中,,则的面积是__________.15.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,若AB=2,则此三角形移动的距离AA′=_______.16.在△ABC中,∠B=45°,∠C=75°,AC=2,则BC的值为_____.17.如图,一次函数=与反比例函数=(>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为,则该反比例函数的函数表达式为__________________________.18.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.三、解答题(共78分)19.(8分)某服装店用1440元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用3240元,再次以比第一次进价多4元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?20.(8分)如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求证:CD=CE.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.22.(10分)如图,在△ABC中,点D在BC上,CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD23.(10分)如图,在Rt△ABC中,∠C=90°,AB=10cm,BC=6cm.动点P,Q从点A同时出发,点P沿AB向终点B运动;点Q沿AC→CB向终点B运动,速度都是1cm/s.当一个点到达终点时,另一个点同时停止运动.设点P运动的时间为t(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为S(cm2).(1)AC=_________cm;(2)当点P到达终点时,BQ=_______cm;(3)①当t=5时,s=_________;②当t=9时,s=_________;(4)求S与t之间的函数解析式.24.(10分)已知:梯形ABCD中,AD//BC,AD=AB,对角线AC、BD交于点E,点F在边BC上,且∠BEF=∠BAC.(1)求证:△AED∽△CFE;(2)当EF//DC时,求证:AE=DE.25.(12分)已知:二次函数为(1)写出它的图象的开口方向,对称轴及顶点坐标;(2)为何值时,顶点在轴上方;(3)若抛物线与轴交于,过作轴交抛物线于另一点,当时,求此二次函数的解析式.26.如图,抛物线与轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.(1)求抛物线的解析式和顶点坐标.(2)当点位于轴下方时,求面积的最大值.(3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.求关于的函数解析式,并写出自变量的取值范围;②当时,点的坐标是___________.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据平行线分线段成比例的推论:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,逐项判断即可得答案.【详解】A.∵∴不能判定,故本选项不符合题意;B.无法判断,则不能判定,故本选项不符合题意;C.∵,,,∴∴故本选项符合题意;D.∵∴不能判定,故本选项不符合题意;故选C.【点睛】本题考查平行线分线段成比例的推论,熟练掌握此推论判定平行是解题的关键.2、D【分析】把∠DAB归到三角形中,所以连结BD,利用同弧所对的圆周角相等,求出∠A的度数,AB为直径,由直径所对圆周角为直角,可知∠DAB与∠B互余即可.【详解】连结BD,∵同弧所对的圆周角相等,∴∠B=∠C=40º,∵AB为直径,∴∠ADB=90º,∴∠DAB+∠B=90º,∴∠DAB=90º-40º=50º.故选择:D.【点睛】本题考查圆周角问题,关键利用同弧所对圆周角转化为三角形的内角,掌握直径所对圆周角为直角,会利用余角定义求角.3、C【解析】根据反比例函数的定义判断即可.【详解】A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选C.【点睛】本题考查的是反比例函数的定义,形如y=(k为常数,k≠0)的函数称为反比例函数.4、C【解析】根据确定圆的条件、垂径定理的推论、圆心角、弧、弦的关系、三角形的外心的知识进行判断即可.【详解】解:A、经过不在同一直线上的三点可以作一个圆,A错误;B、平分弦(不是直径)的直径垂直于这条弦,B错误;C、等弧所对的圆心角相等,C正确;D、三角形的外心到各顶点的距离相等,D错误;故选:C.【点睛】本题考查的是圆心角、弧、弦的关系、确定圆的条件、垂径定理的推论和三角形外心的知识,掌握相关定理并灵活运用是解题的关键.5、D【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为2的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率.【详解】∵点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,∴连接两点所得的所有线段总数n==15条,∵取到长度为2的线段有:FC、AD、EB共3条∴在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为:p=.故选:D【点睛】此题主要考查了正多边形和圆以及几何概率,正确利用正六边形的性质得出AD的长是解题关键.6、A【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,确定平移方向即可得解.【详解】解:抛物线的顶点坐标为(0,−2),

抛物线的顶点坐标为(3,-2),

所以,向右平移3个单位,可以由抛物线平移得到抛物线.

故选:A.【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.7、A【分析】利用A点与C点为抛物线上的对称点得到对称轴为直线x=2,然后根据点B、D、E离对称轴的远近求解.【详解】∵二次函数y=-x2+px+q的图像经过A(,n)、C(,n),

∴抛物线开口向下,对称轴为直线,∵点D(,y2)的横坐标:,离对称轴距离为,点E(,y3)的横坐标:,离对称轴距离为,∴B(0,y1)离对称轴最近,点E离对称轴最远,∴y3<y2<y1.

故选:A.【点睛】本题考查了二次函数函数的性质,二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式,根据抛物线上的对称点坐标得到对称轴是解题的关键.8、B【分析】电流I(A)与电阻R(Ω)成反比例,可设I=,根基图象得到图象经过点(5,2),代入解析式就得到k的值,从而能求出解析式.【详解】解:可设,根据题意得:,解得k=10,∴.当R=4Ω时,(A).故选B.【点睛】本题主要考查的是反比例函数的应用,利用待定系数法是求解析式时常用的方法.9、C【解析】试题解析:关于的一元二次方程没有实数根,,解得:故选C.10、D【分析】根据最简二次根式的概念即可求出答案.【详解】解:A.,故此选项错误;B.,故此选项错误;C.,故此选项错误;D.是最简二次根式,故此选项正确故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的概念,本题属于基础题型.11、C【解析】观察图形,两个断开的水平菱形之间最小有2个竖的菱形,之后在此基础上每增加一个也可完整,即可以是2、5、8、11……故选C.点睛:探索规律的题型最关键的是找准规律.12、B【分析】用因式分解法求解即可得到结论.【详解】∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:,.故选:B.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本题的关键.二、填空题(每题4分,共24分)13、y=2(x-2)2+3【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,

故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.14、24【分析】如图,由三角函数的定义可得,可得AB=,利用勾股定理可求出AC的长,根据三角形面积公式求出△ABC的面积即可.【详解】∵,∴AB=,∴()2=AC2+BC2,∵BC=8,∴25AC2=9AC2+9×64,解得:AC=6(负值舍去),∴△ABC的面积是×8×6=24,故答案为:24【点睛】本题考查三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是角的邻边与斜边的比值;正切是角的对边与邻边的比值;熟练掌握三角函数的定义是解题关键.15、【分析】由题意易得阴影部分与△ABC相似,然后根据相似三角形的面积比是相似比的平方可求解.【详解】解:把△ABC沿AB边平移到△A′B′C′的位置,,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,AB=2,即,;故答案为.【点睛】本题主要考查相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.16、【分析】构造直角三角形,利用锐角三角函数及三角形的边角关系求解.【详解】解:如图所示,过点C作CD⊥AB,垂足为D.在Rt△BCD中,∠B=45°,∴∠BCD=45°,∵∠BCA=75°,∴∠ACD=∠ACB﹣∠BCD=30°在Rt△ACD中,∵cos∠ACD=cos30°==,∴CD=AC=,在Rt△ACD中,∵sin∠B=sin45°==∴CB=DC=故答案为.【点睛】本题考查了特殊角的三角函数值及直角三角形的边角间关系,构造直角三角形是解决本题的关键.17、或【解析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数=(>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:或,故答案为或【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.18、1【解析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=×4×4=1,故答案为1.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.三、解答题(共78分)19、(1)45;(2)1.【分析】(1)设该服装店第一次购买了此种服装x件,则第二次购进2x件,根据单价=总价÷数量结合第二次购进单价比第一次贵4元,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)根据销售单价×销售数量-两次进货总价=利润,即可求出结论.【详解】解:(1)设该服装店第一次购买了此种服装件,则第二次购进件,根据题意得:解得:经检验:是原方程的根,且符合题意.答:该服装店第一次购买了此种服装45件.(2)(元)答:两次出售服装共盈利1元.【点睛】本题考查分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量间的关系,列式计算.20、见解析【解析】试题分析:作BF∥AC交EC于F,通过证明△FBC≌△DBC,得到CD=CF,根据三角形中位线定理得到CF=CE,等量代换得到答案.试题解析:证明:作BF∥AC交EC于F.∵BF∥AC,∴∠FBC=∠ACB.∵AB=AC,∴∠ABC=∠ACB,∴∠FBC=∠ABC.∵BF∥AC,BE=AB,∴BF=AC,CF=CE.∵CD是AB边上的中线,∴BD=AB,∴BF=BD.在△FBC和△DBC中,∵BF=BD,∠FBC=∠DBC,BC=BC,∴△FBC≌△DBC,∴CD=CF,∴CD=CE.点睛:本题考查的是三角形中位线定理、全等三角形的判定和性质以及等腰三角形的性质,正确作出辅助线、灵活运用定理是解题的关键.21、证明见解析;【解析】试题分析:由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.考点:全等三角形的判定与性质.22、见解析【解析】试题分析:由等腰三角形三线合一得FA=FD.又由E是中点,所以EF是中位线,即得结论.∵CD=CA,CF平分∠ACB,∴FA=FD(三线合一),∵FA=FD,AE=EB,∴EF=BD.考点:本题考查的是等腰三角形的性质,三角形的中位线点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.23、(1)8;(2)4;(3)①,②22;(4)【分析】(1)根据勾股定理求解即可;(2)先求出点P到达中点所需时间,则可知点Q运动路程,易得CQ长,;(3)①作PD⊥AC于D,可证△APD∽△ABC,利用相似三角形的性质可得PD长,根据面积公式求解即可;②作PE⊥AC于E,可证△PBE∽△ABC,利用相似三角形的性质可得PE长,用可得s的值;(4)当0<t≤8时,作PD⊥AC于D,可证△APD∽△ABC,可用含t的式子表示出PD的长,利用三角形面积公式可得s与t之间的函数解析式;当8<t≤10时,作PE⊥AC于E,可证△PBE∽△ABC,利用相似三角形的性质可用含t的式子表示出PE长,用可得s与t之间的函数解析式.【详解】解:(1)在Rt△ABC中,由勾股定理得(2)设点P运动到终点所需的时间为t,路程为AB=10cm,则点Q运动的路程为10cm,即cm所以当点P到达终点时,BQ=4cm.(3)①作PD⊥AC于D,则∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即∴.∴.②如图,作PE⊥AC于E,则∵∠B=∠B.∠BEP=∠C=90°,∴△PBE∽△ABC.∴.即.∴.∴.(4)当0<t≤8时,如图①.作PD⊥AC于D.∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即.∴.∴.当8<t≤10时,如图②.作PE⊥AC于E.∵∠B=∠B.∠BEP=∠C=90°,∴△PBE∽△ABC.∴.即.∴.∴.综上所述:【点睛】本题考查了二次函数在三角形动点问题中的应用,涉及的知识点有勾股定理、相似三角形的判定与性质,灵活的应用相似三角形对应线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论