安徽省宣城市中学2024届中考数学五模试卷含解析_第1页
安徽省宣城市中学2024届中考数学五模试卷含解析_第2页
安徽省宣城市中学2024届中考数学五模试卷含解析_第3页
安徽省宣城市中学2024届中考数学五模试卷含解析_第4页
安徽省宣城市中学2024届中考数学五模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宣城市中学2024届中考数学五模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A. B. C. D.2.下列命题是真命题的是()A.如实数a,b满足a2=b2,则a=bB.若实数a,b满足a<0,b<0,则ab<0C.“购买1张彩票就中奖”是不可能事件D.三角形的三个内角中最多有一个钝角3.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤4.下列计算正确的是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a25.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A. B. C. D.6.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°7.如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3πcm,则滑轮上的点F旋转了()A.60° B.90° C.120° D.45°8.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A.选科目E的有5人B.选科目A的扇形圆心角是120°C.选科目D的人数占体育社团人数的D.据此估计全校1000名八年级同学,选择科目B的有140人9.如图所示的几何体的左视图是()A. B. C. D.10.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(1)()2=_____;(2)=_____.12.已知关于X的一元二次方程有实数根,则m的取值范围是____________________13.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正确的是_____.14.计算:=_________

.15.如图,已知的半径为2,内接于,,则__________.16.若代数式在实数范围内有意义,则实数x的取值范围为_____.三、解答题(共8题,共72分)17.(8分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.18.(8分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?19.(8分)解方程:3x2﹣2x﹣2=1.20.(8分)如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.21.(8分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.29.69.67.89.346.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根据上面的数据,将下表补充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙_______________________________(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示:结论:人员平均数(万元)中位数(万元)众数(万元)甲8.28.99.6乙8.28.49.7(1)估计乙业务员能获得奖金的月份有______个;(2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)22.(10分)鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.23.(12分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是.其中m=,n=.(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.24.定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.若a=2,b=﹣1,直接写出a,b的“如意数”c;如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】

根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.2、D【解析】

A.两个数的平方相等,这两个数不一定相等,有正负之分即可判断B.同号相乘为正,异号相乘为负,即可判断C.“购买1张彩票就中奖”是随机事件即可判断D.根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a,b满足a2=b2,则a=±b,A是假命题;数a,b满足a<0,b<0,则ab>0,B是假命题;若实“购买1张彩票就中奖”是随机事件,C是假命题;三角形的三个内角中最多有一个钝角,D是真命题;故选:D【点睛】本题考查了命题与定理,根据实际判断是解题的关键3、D【解析】

①首先利用已知条件根据边角边可以证明△APD≌△AEB;

②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;

③利用全等三角形的性质和对顶角相等即可判定③说法正确;

④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;

⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【详解】由边角边定理易知△APD≌△AEB,故①正确;

由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,

所以∠BEP=90°,

过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,

在△AEP中,由勾股定理得PE=,

在△BEP中,PB=,PE=,由勾股定理得:BE=,

∵∠PAE=∠PEB=∠EFB=90°,AE=AP,

∴∠AEP=45°,

∴∠BEF=180°-45°-90°=45°,

∴∠EBF=45°,

∴EF=BF,

在△EFB中,由勾股定理得:EF=BF=,

故②是错误的;

因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;

由△APD≌△AEB,

∴PD=BE=,

可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;

连接BD,则S△BPD=PD×BE=,

所以S△ABD=S△APD+S△APB+S△BPD=2+,

所以S正方形ABCD=2S△ABD=4+.

综上可知,正确的有①③⑤.故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.4、D【解析】

根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】-aa-b2a2-3a故选:D.【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.5、C【解析】

列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【详解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为=,故选C.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6、C【解析】

由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.7、B【解析】

由弧长的计算公式可得答案.【详解】解:由圆弧长计算公式,将l=3π代入,可得n=90,故选B.【点睛】本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.8、B【解析】

A选项先求出调查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用×360°判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定.【详解】解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;故选B.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.9、A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.10、D【解析】

根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】

(1)直接利用分式乘方运算法则计算得出答案;(2)直接利用分式除法运算法则计算得出答案.【详解】(1)()2=;故答案为;(2)==.故答案为.【点睛】此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.12、m≤3且m≠2【解析】试题解析:∵一元二次方程有实数根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.13、①②④【解析】①由a=b,得5﹣2a=5﹣2b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,②由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确,③由a=b,得,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为可能为0,所以本选项不正确,④由,得3a=2b,根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确,⑤因为互为相反数的平方也相等,由a2=b2,得a=b,或a=-b,所以本选项错误,故答案为:①②④.14、2【解析】

利用平方差公式求解,即可求得答案.【详解】=()2-()2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.15、【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16、x≤1【解析】

根据二次根式有意义的条件可求出x的取值范围.【详解】由题意可知:1﹣x≥0,∴x≤1故答案为:x≤1.【点睛】本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可.三、解答题(共8题,共72分)17、解:(1)直线CD和⊙O的位置关系是相切,理由见解析(2)BE=1.【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.试题解析:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理18、自行车速度为16千米/小时,汽车速度为40千米/小时.【解析】

设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【详解】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得,解得x=16,经检验x=16适合题意,2.5x=40,答:自行车速度为16千米/小时,汽车速度为40千米/小时.19、【解析】

先找出a,b,c,再求出b2-4ac=28,根据公式即可求出答案.【详解】解:x==即∴原方程的解为.【点睛】本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.20、(1)m=2;y=x+;(2)P点坐标是(﹣,).【解析】

(1)利用待定系数法求一次函数和反比例函数的解析式;

(2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标.【详解】解:(1)∵反比例函数的图象过点∴∵点B(﹣1,m)也在该反比例函数的图象上,∴﹣1•m=﹣2,∴m=2;设一次函数的解析式为y=kx+b,由y=kx+b的图象过点A,B(﹣1,2),则解得:∴一次函数的解析式为(2)连接PC、PD,如图,设∵△PCA和△PDB面积相等,∴解得:∴P点坐标是【点睛】本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.21、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.【解析】

(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,(2)根据中位数和平均数即可解题.【详解】解:如图,销售额数量x人员4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙013024(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.【点睛】本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.22、(1)若使水果礼盒的月销量不低于盒,每盒售价应不高于元;(2)的值为.【解析】

(1)设每盒售价应为x元,根据月销量=980-30×超出14元的部分结合月销量不低于800盒,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;

(2)根据总利润=每盒利润×销售数量,即可得出关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论