2024届如皋实验初中中考适应性考试数学试题含解析_第1页
2024届如皋实验初中中考适应性考试数学试题含解析_第2页
2024届如皋实验初中中考适应性考试数学试题含解析_第3页
2024届如皋实验初中中考适应性考试数学试题含解析_第4页
2024届如皋实验初中中考适应性考试数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届如皋实验初中中考适应性考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.3的相反数是()A.﹣3 B.3 C. D.﹣2.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50° B.40° C.30° D.25°3.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是()A.1 B.2 C.﹣ D.﹣4.下列命题中假命题是()A.正六边形的外角和等于 B.位似图形必定相似C.样本方差越大,数据波动越小 D.方程无实数根5.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.86.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm7.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.8.-3的倒数是()A.3 B.13 C.-19.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1 B.2 C.3 D.410.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是()A.0 B.1 C.2 D.3二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.12.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.13.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为.14.计算:﹣|﹣2|+()﹣1=_____.15.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B4的坐标为_____,点B2017的坐标为_____.16.二次根式中字母x的取值范围是_____.17.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.三、解答题(共7小题,满分69分)18.(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.求与之间的函数关系式,并写出自变量的取值范围;求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?19.(5分)如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).20.(8分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.21.(10分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?22.(10分)为给邓小平诞辰周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡长60米,坡角(即)为,,现计划在斜坡中点处挖去部分斜坡,修建一个平行于水平线的休闲平台和一条新的斜坡(下面两个小题结果都保留根号).若修建的斜坡BE的坡比为:1,求休闲平台的长是多少米?一座建筑物距离点米远(即米),小亮在点测得建筑物顶部的仰角(即)为.点、、、,在同一个平面内,点、、在同一条直线上,且,问建筑物高为多少米?23.(12分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p倍,且p=.试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!24.(14分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:根据相反数的概念知:1的相反数是﹣1.故选A.【考点】相反数.2、B【解析】

解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.3、C【解析】试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1•x2=﹣4代入,即可求出=.故选C.考点:根与系数的关系4、C【解析】试题解析:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.考点:命题与定理.5、C【解析】

解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.6、D【解析】

解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.7、C【解析】

根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.8、C【解析】

由互为倒数的两数之积为1,即可求解.【详解】∵-3×-13=1,∴故选C9、D【解析】

由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.10、C【解析】

由四边形ABCD是正方形,得到AD=BC,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出直接用余弦可求出.【详解】详解:∵四边形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正确;②无法证明,故错误.∵BP=1,AB=3,∴∴故③正确,故选C.【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】

首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.12、【解析】

利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.【详解】解:∵直角三角形的两条直角边的长分别为5,12,∴斜边为=13,∵三角形的面积=×5×12=×13h(h为斜边上的高),∴h=.故答案为:.【点睛】考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.13、【解析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.解:列表得:(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

(6,5)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,∴两个骰子的点数相同的概率为:=.故答案为.考点:列表法与树状图法.14、﹣1【解析】

根据立方根、绝对值及负整数指数幂等知识点解答即可.【详解】原式=-2-2+3=-1【点睛】本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.15、(20,4)(10086,0)【解析】

首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【详解】解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,B2016的横坐标为:×10=1.∵B2C2=B4C4=OB=4,∴点B4的坐标为(20,4),∴B2017的横坐标为1++=10086,纵坐标为0,∴点B2017的坐标为:(10086,0).故答案为(20,4)、(10086,0).【点睛】本题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题的关键.16、x≤1【解析】

二次根式有意义的条件就是被开方数是非负数,即可求解.【详解】根据题意得:1﹣x≥0,解得x≤1.故答案为:x≤1【点睛】主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.17、1.【解析】由题意,得b−1=−1,1a=−4,解得b=−1,a=−1,∴ab=(−1)×(−1)=1,故答案为1.三、解答题(共7小题,满分69分)18、(1)(2),,144元【解析】

(1)利用待定系数法求解可得关于的函数解析式;(2)根据“总利润每件的利润销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【详解】(1)设与的函数解析式为,将、代入,得:,解得:,所以与的函数解析式为;(2)根据题意知,,,当时,随的增大而增大,,当时,取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.19、(1)见解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整体分析:(1)用ASA证明△ADE≌△CBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE≌△CBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.解:(1)证明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,,∴△ADE≌△CBF,∴AD=BC,∴四边形ABCD是平行四边形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四边形ABCD是平行四边形,∴AB=DC.20、(1)列表见解析;(2)这个游戏规则对双方不公平.【解析】

(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.【详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率;(2)这个游戏规则对双方不公平.理由如下:因为P(和为奇数),P(和为偶数),而,所以这个游戏规则对双方是不公平的.【点睛】本题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.21、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】

(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;.当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.22、(1)m(2)米【解析】分析:(1)由三角函数的定义,即可求得AM与AF的长,又由坡度的定义,即可求得NF的长,继而求得平台MN的长;(2)在RT△BMK中,求得BK=MK=50米,从而求得EM=84米;在RT△HEM中,求得,继而求得米.详解:(1)∵MF∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB长米,M是AB的中点,∴AM=(米),∴AF=MF=AM•cos∠AMF=(米),在中,∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论