版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古自治区巴彦淖尔联考中考一模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.下列计算正确的是()A.2x+3x=5x B.2x•3x=6x C.(x3)2=5 D.x3﹣x2=x2.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是()A. B.C. D.3.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣74.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)5.估计的值在()A.0到l之间 B.1到2之间 C.2到3之间 D.3到4之间6.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为()A.2 B. C. D.7.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4408.下列运算正确的是()A.a4+a2=a4 B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2 D.b6÷b2=b39.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为()A.120° B.110° C.100° D.80°10.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元 B.200元 C.225元 D.259.2元二、填空题(本大题共6个小题,每小题3分,共18分)11.一个不透明的口袋中有2个红球,1个黄球,1个白球,每个球除颜色不同外其余均相同.小溪同学从口袋中随机取出两个小球,则小溪同学取出的是一个红球、一个白球的概率为_____.12.不等式组的解集为,则的取值范围为_____.13.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;(2)∠APB=∠ACB的依据是_____.14.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.15.被历代数学家尊为“算经之首”的九章算术是中国古代算法的扛鼎之作九章算术中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻一雀一燕交而处,衡适平并燕、雀重一斤问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻将一只雀、一只燕交换位置而放,重量相等只雀、6只燕重量为1斤问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为______.16.64的立方根是_______.三、解答题(共8题,共72分)17.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)18.(8分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.19.(8分)先化简,再求值:,其中满足.20.(8分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.请判断:AF与BE的数量关系是,位置关系;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.21.(8分)已知,求代数式的值.22.(10分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.(1)写出抛物线的函数表达式;(2)判断△ABC的形状,并证明你的结论;(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由.23.(12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.24.小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】
依据合并同类项法则、单项式乘单项式法则、积的乘方法则进行判断即可.【详解】A、2x+3x=5x,故A正确;B、2x•3x=6x2,故B错误;C、(x3)2=x6,故C错误;D、x3与x2不是同类项,不能合并,故D错误.故选A.【点睛】本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键.2、B【解析】试题解析:∵转盘被等分成6个扇形区域,而黄色区域占其中的一个,∴指针指向黄色区域的概率=.故选A.考点:几何概率.3、B【解析】
因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B.4、A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选A.点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.5、B【解析】∵9<11<16,∴,∴故选B.6、C【解析】解:连接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故选C.点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.7、A【解析】
根据题意可以列出相应的一元二次方程,从而可以解答本题.【详解】解:由题意可得,1000(1+x)2=1000+440,故选:A.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.8、B【解析】分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;根据同底数幂的除法,可知b6÷b2=b4,不正确.故选B.点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.9、D【解析】
先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10、A【解析】
设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
先画树状图求出所有等可能的结果数,再找出从口袋中随机摸出2个球,摸到的两个球是一红一白的结果数,然后根据概率公式求解.【详解】解:根据题意画树状图如下:共有12种等可能的结果数,其中从口袋中随机摸出2个球,摸到的一个红球、一个白球的结果数为4,所以从口袋中随机摸出2个球,则摸到的两个球是一白一黄的概率为.故答案为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.12、k≥1【解析】解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.故答案为k≥1.13、①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换同弧所对的圆周角相等【解析】
(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.
(2)根据同弧所对的圆周角相等即可得出结论.【详解】(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案是:(2)∵,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.【点睛】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.14、1【解析】
连接BD.根据圆周角定理可得.【详解】解:如图,连接BD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案为1.【点睛】考核知识点:圆周角定理.理解定义是关键.15、【解析】
设雀、燕每1只各重x斤、y斤,根据等量关系:今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤,列出方程组求解即可.【详解】设雀、燕每1只各重x斤、y斤,根据题意,得整理,得故答案为【点睛】考查二元一次方程组得应用,解题的关键是分析题意,找出题中的等量关系.16、4.【解析】
根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.三、解答题(共8题,共72分)17、51.96米.【解析】
先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.【详解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt△BDC中,∴(米).答:文峰塔的高度CD约为51.96米.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.18、见解析,【解析】
要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.【详解】证明:由折叠得:BC=EC,∠B=∠AEC,∵矩形ABCD,∴BC=AD,∠B=∠ADC=90°,∴EC=DA,∠AEC=∠ADC=90°,又∵∠AFD=∠CFE,∴△ADF≌△CEF(AAS)∴∠DAE=∠ECD.【点睛】本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.19、1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.试题解析:原式=∵x2−x−1=0,∴x2=x+1,则原式=1.20、(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立【解析】试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;(2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;(3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.试题解析:解:(1)AF=BE,AF⊥BE.(2)结论成立.证明:∵四边形ABCD是正方形,∴BA="AD"=DC,∠BAD=∠ADC=90°.在△EAD和△FDC中,∴△EAD≌△FDC.∴∠EAD=∠FDC.∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.在△BAE和△ADF中,∴△BAE≌△ADF.∴BE=AF,∠ABE=∠DAF.∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE.(3)结论都能成立.考点:正方形,等边三角形,三角形全等21、12【解析】解:∵,∴.∴.将代数式应用完全平方公式和平方差公式展开后合并同类项,将整体代入求值.22、(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).【解析】
(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,从而得到∠ABC=90°,所以△ABC为直角三角形;(3)利用勾股定理计算出AC=10,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=2,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI=×2=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣x+13,然后分别求出P、Q、G的坐标即可.【详解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2﹣7x+1;故答案为y=x2﹣7x+1;(2)△ABC为直角三角形.理由如下:当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC为直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的内切圆的半径=,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,∵I为△ABC的内心,∴AI、BI为角平分线,∴BI⊥y轴,而AI⊥PQ,∴PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等,BI=×2=4,而BI⊥y轴,∴I(4,1),设直线AI的解析式为y=kx+n,则,解得,∴直线AI的解析式为y=2x﹣7,当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);设直线AP的解析式为y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直线AP的解析式为y=﹣x+13,当y=1时,﹣x+13=1,则P(24,1)当x=0时,y=﹣x+13=13,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.23、(1)P=t+2;(2)①当0<t≤8时,w=240;当8<t≤12时,w=2t2+12t+16;当12<t≤24时,w=﹣t2+42t+88;②此范围所对应的月销售量P的最小值为12吨,最大值为19吨.【解析】分析:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度建筑材料供货与装配式建筑构件合同3篇
- 2025年度年度商标转让与新媒体营销合同模板3篇
- 2025年度消防设施安全性能检测与评估合同汇编3篇
- 二零二五年度农村私人土地流转合同(休闲农业旅游合作)
- 2025年度健康医疗服务担保合同解除与健康管理平台合作协议3篇
- 2025年度外贸服装品牌授权及全球市场拓展合同3篇
- 二零二五年度公司管理人员跨区域调动聘用合同3篇
- 2025年度茶楼租赁合同茶楼与茶叶供应商合作框架协议3篇
- 二零二五年度有机蔬菜代加工业务合同2篇
- 2024年中国百癣片市场调查研究报告
- 人教版美术五年级上册《第2课 色彩的和谐》说课稿2
- 2024年6月浙江省高考历史试卷(真题+答案)
- 住友(SWS)汽车连接器(Connectors)产品配套手册
- 办公楼室内装饰工程施工设计方案技术标范本
- 2023年香港华夏杯六年级竞赛初赛数学试卷
- 高中数学放缩法
- 上海市闵行区2024-2025学年八年级(上)期末物理试卷(解析版)
- 安徽省安庆市迎江区2023-2024学年四年级上学期期末数学试卷
- 2024年国考行测真题-言语理解与表达真题及完整答案1套
- 人教版三年级上册数学期末测试卷可打印
- 医疗高级职称评审论文答辩
评论
0/150
提交评论