高考生物一轮总复习:第六单元 遗传的分子基础_第1页
高考生物一轮总复习:第六单元 遗传的分子基础_第2页
高考生物一轮总复习:第六单元 遗传的分子基础_第3页
高考生物一轮总复习:第六单元 遗传的分子基础_第4页
高考生物一轮总复习:第六单元 遗传的分子基础_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考生物一轮总复习:第六单元遗传的分子基础目录第1讲DNA是主要的遗传物质第2讲DNA分子的结构、复制以及基因的本质第3讲基因的表达第1讲DNA是主要的遗传物质一、选择题1.下列各项科学发现,都早于艾弗里等人证实“DNA是遗传物质”的实验,其中哪项成果不能作为当时生物学家推测“DNA可能是遗传物质”的证据()A.同一物种的不同个体的体细胞DNA含量稳定,但不同物种的体细胞DNA含量不同B.配子中DNA含量是体细胞DNA含量的一半C.诱发突变的最有效的紫外线波长是2.6×10-7m,与DNA分子的吸收峰值相同D.DNA分子含磷酸、五碳糖、含氮碱基等化学成分解析组成DNA分子的化合物种类不能作为DNA是遗传物质的证据,如RNA、ATP等也是由这三种成分组成;同一生物体的不同细胞中遗传物质含量稳定,不同生物间遗传物质含量不同;导致遗传物质发生变化最有效的紫外线波长刚好与DNA分子的吸收峰值相同,说明遗传物质可能是DNA。答案D2.下列关于遗传物质实验的叙述,正确的是()A.格里菲思的实验证明了加热杀死的R型细菌中存在转化因子B.艾弗里肺炎双球菌转化实验中,DNA纯度越高,转化就越有效C.从烟草花叶病毒中提取出的RNA不能使烟草感染病毒D.用35S标记的噬菌体侵染大肠杆菌后,搅拌不充分会导致沉淀物中放射性偏低解析格里菲思的实验证明了加热杀死的S型细菌中存在转化因子,A项错误;艾弗里肺炎双球菌转化实验中,转化效率与DNA的纯度呈正相关,B项正确;烟草花叶病毒为RNA病毒,其遗传物质为RNA,故从烟草花叶病毒中提取出的RNA可以使烟草感染病毒,C项错误;用35S标记的噬菌体侵染大肠杆菌后,搅拌不充分,则部分蛋白质外壳未与细菌分离,导致沉淀物中的放射性偏高,D项错误。答案B3.“肺炎双球菌的转化实验”证明了DNA是遗传物质,而蛋白质不是遗传物质,得出这一结论的关键是()A.用S型活菌和加热杀死后的S型菌分别对小白鼠进行注射,并形成对照B.用杀死的S型菌与无毒的R型菌混合后注射到小鼠体内,测定小鼠体液中的抗体含量C.从死亡小鼠体内分离获得了S型菌D.将S型菌的各种物质分离并分别加入各培养基中,培养R型菌,观察是否发生转化解析将S型菌的各种物质分离并分别加入各培养基中,观察R型菌是否发生转化,结果加入DNA能使R型菌发生转化,加入蛋白质不能使R型菌发生转化,证明DNA是遗传物质,蛋白质不是遗传物质。答案D4.下列有关DNA是遗传物质的探究实验的叙述正确的是()A.高温杀死经DNA酶处理过的S型细菌,将其与R型细菌混合并注入小鼠体内,小鼠不会死亡B.用未标记的噬菌体侵染被35S标记的细菌,经适当搅拌、离心后检测到放射性主要存在于上清液中C.用烟草花叶病毒的遗传物质感染烟草,可以证明DNA是遗传物质D.分别用添加了S型细菌不同组成成分的培养基培养R型细菌,结果都会出现R型细菌的菌落解析用DNA酶处理S型细菌,因为细胞膜的保护,S型细菌的DNA不会被水解,经高温处理后,DNA酶失活,但S型细菌的DNA未失活,可将少数R型细菌转化成S型细菌,所以小鼠会死亡,A项错误;噬菌体侵染细菌时,蛋白质外壳留在细菌表面,遗传物质注入细菌中,并利用细菌中的物质合成自身蛋白质和DNA,被35S标记的细菌可使合成的子代噬菌体外壳含有放射性,但经适当搅拌、离心,子代噬菌体未从细菌中释放出来,细菌存在于沉淀物中,放射性应该出现在沉淀物中,B项错误;烟草花叶病毒的遗传物质是RNA,不是DNA,C项错误;只有将S型细菌的DNA与R型细菌混合才会有少量S型细菌生成,培养基中大部分为R型细菌菌落;若将S型细菌的其他组成成分与R型细菌混合培养,则培养基中只有R型细菌的菌落,D项正确。答案D5.在肺炎双球菌的转化实验中,在培养有R型细菌的1、2、3、4四支试管中,依次加入从S型活细菌中提取的DNA、蛋白质、多糖、DNA和DNA酶,经过培养,检查结果发现试管内仍然有R型细菌的是()A.2和3B.1、2和3C.2、3和4 D.1、2、3和4解析四支试管中都培养有R型细菌,加入S型细菌DNA的1号试管有部分R型细菌转化成S型细菌,即R型细菌和S型细菌都有,其余三支试管中都只有R型细菌。故D项正确。答案D6.艾弗里等人的肺炎双球菌转化实验和赫尔希与蔡斯的噬菌体侵染细菌实验都证明了DNA是遗传物质。下列关于这两个实验的叙述正确的是()A.二者都应用了同位素示踪技术B.二者的设计思路都是设法把DNA与蛋白质分开,研究各自的效应C.艾弗里的实验设置了对照,赫尔希与蔡斯的实验没有对照D.二者都诱发了DNA突变解析肺炎双球菌转化实验和噬菌体侵染细菌实验的设计思路都是设法把DNA和蛋白质分开,研究各自的效应,都遵循对照原则,但二者都没有诱发DNA突变,其中只有噬菌体侵染细菌实验应用了同位素示踪技术。答案B7.用同位素标记技术追踪研究物质的转移变化途径是生物科学研究的重要手段之一。下列相关的应用及结果错误的是()A.小白鼠吸入18O2后呼出的CO2不会含有18O,但尿液中会含有H218OB.用含有3H标记的胸腺嘧啶脱氧核苷酸的营养液培养洋葱的根尖,可以在细胞核和线粒体内检测到较强的放射性,而在核糖体处检测不到C.将15N标记的DNA置于含14N标记的脱氧核苷酸的培养液中进行复制,经密度梯度离心后可以分析得出DNA具有半保留复制的特点D.要得到含32P的噬菌体,必须先用含32P的培养基培养细菌解析小鼠吸入的18O2首先参与有氧呼吸的第三阶段,形成H218O,如果H218O接着参与有氧呼吸的第二阶段,则会产生C18O2,故呼出的CO2中可能含有18O,故A项错误;根尖分生区细胞进行有丝分裂,细胞核和线粒体中DNA的复制会消耗含有放射性同位素的脱氧核苷酸,而核糖体不含DNA,故B项正确;DNA复制一次经密度梯度离心后可得到中带,DNA复制两次经密度梯度离心后可得到中带和轻带,故而可推导出DNA具有半保留复制的特点,故C项正确;病毒营寄生生活,不能在培养基上繁殖,所以要标记病毒首先应标记细菌,故D项正确。答案A8.如果用3H、15N、32P、35S标记T2噬菌体后,让其侵染未被标记的大肠杆菌,能够在子代噬菌体的组成成分中找到的放射性同位素有()A.在子代噬菌体的外壳中找到3H、15N、35SB.在子代噬菌体的外壳中找到15N、35SC.在子代噬菌体的DNA中找到3H、15N、32PD.在子代噬菌体的DNA中找到15N、32P、35S解析3H、15N可同时标记T2噬菌体的DNA和蛋白质外壳,32P只标记T2噬菌体的DNA,35S只标记T2噬菌体的蛋白质。亲代T2噬菌体的DNA可进入大肠杆菌,通过半保留复制合成子代噬菌体的DNA,并指导子代噬菌体蛋白质外壳的合成,亲代噬菌体的蛋白质外壳不能进入大肠杆菌,不参与子代噬菌体的合成,所以能够在子代噬菌体的DNA中找到3H、15N、32P,所有子代噬菌体均不含35S。故本题选C项。答案C9.某校生物研究性学习小组模拟赫尔希和蔡斯做了噬菌体侵染细菌的实验,过程如下图所示,下列有关分析正确的是()A.理论上,b和c中不应具有放射性B.实验中b含少量放射性与①过程中培养时间的长短有关C.实验中c含有放射性与④过程中搅拌不充分有关D.实验结果,ad中有少量的放射性,bc中有大量的放射性解析35S标记的是噬菌体的蛋白质外壳,所以离心后,理论上b中不应具有放射性,32P标记DNA进入到细菌体内,分布在沉淀物中,因此上清液c不含有放射性,A项正确;搅拌的目的是将蛋白质外壳和细菌分开,若该过程搅拌不充分,则会导致部分蛋白质外壳吸附在细菌上,并随细菌离心到沉淀物中,使沉淀物中含较高的放射性,若搅拌充分,则沉淀物中的放射性较低,B项错误;实验2,由于外壳没有放射性,因此搅拌不充分,上清液也不会含有放射性,C项错误;实验结果,bc中有少量的放射性,ad中有大量的放射性,D项错误。答案A10.1952年“噬菌体小组”的赫尔希和蔡斯研究了噬菌体的蛋白质和DNA在侵染细菌过程中的功能,搅拌离心后的实验数据如图所示,下列说法不正确的是()A.图中被侵染细菌的存活率基本保持在100%,本组数据的意义是作为对照组,以证明细菌未裂解B.通过用含有放射性同位素35S和32P的培养基分别培养噬菌体,再用标记的噬菌体侵染细菌,从而追踪在侵染过程中蛋白质和DNA的变化C.细胞外的32P含量有30%,原因可能是有部分标记的噬菌体还没有侵染细菌D.本实验证明噬菌体传递和复制遗传特性的过程中DNA起着重要作用解析实验设置要遵循对照原则和单一变量原则。为了防止细菌裂解释放噬菌体干扰实验结果,因此设置被侵染的细菌的实验数据作为对照,A项正确;噬菌体是病毒,不能在普通培养基上培养,而是先培养大肠杆菌,再用噬菌体侵染大肠杆菌,而且噬菌体蛋白质外壳没有进入细菌,B项错误;细胞外含有少量32P,原因是侵染时间过短或过长,C项正确;本实验证明噬菌体的遗传物质是DNA,D项正确。答案B11.对①~⑤这五种生物进行分析比较,结果如下表所示:比较项目①②③④⑤细胞壁无无有有无所含核酸种类DNADNA或RNADNA和RNADNA和RNADNA和RNA是否遵循孟德尔遗传定律否否是否是其中最可能表示肺炎双球菌和噬菌体的分别是()A.①和② B.⑤和①C.④和② D.④和①解析肺炎双球菌属于原核生物,具有细胞壁,含有DNA和RNA;噬菌体属于病毒,不具有细胞结构,仅含有DNA一种核酸;两种生物均不遵循孟德尔遗传定律。答案D12.科学家从烟草花叶病毒(TMV)中分离出a、b两个不同品系,它们感染植物产生的病斑形态不同。下列4组实验(见下表)中,不可能出现的结果是()实验编号实验结果实验过程病斑类型病斑中分离出的病毒类型①a型TMV→感染植物a型a型②b型TMV→感染植物b型b型③组合病毒(a型TMV的蛋白质+b型TMV的RNA)→感染植物b型a型④组合病毒(b型TMV的蛋白质+a型TMV的RNA)→感染植物a型a型A.实验① B.实验②C.实验③ D.实验④解析因为烟草花叶病毒的遗传物质是RNA,所以决定病毒类型和病斑类型的是RNA,而不是蛋白质。③中的RNA是b型TMV的,分离出的病毒类型就应该是b型。答案C二、非选择题13.1952年,赫尔希和蔡斯进行的噬菌体侵染细菌的实验,是人类探究“什么是遗传物质”的最具说服力的实验。下图为用含32P的T2噬菌体侵染大肠杆菌的实验,据图回答下列问题:(1)T2噬菌体的组成成分是蛋白质和DNA。如果仅凭猜想,控制其性状的遗传物质的情况有__________________________________。(2)你认为怎样才能得到被32P标记的T2噬菌体?请简述你的实验方案。__________________________________________________________。(3)当接种噬菌体后培养时间过长,发现在搅拌后的上清液中有放射性,其最可能的原因是_______________________________________。(4)一个噬菌体含有一个DNA分子。理论上分析,一个被32P标记的T2噬菌体感染细菌后,复制出n个子代噬菌体,其中携带32P的噬菌体有________个。复制时用的原材料来自__________________。解析(1)T2噬菌体的组成成分是蛋白质和DNA,故猜想可能是:①蛋白质和DNA都是遗传物质;②其遗传物质是蛋白质,不是DNA;③其遗传物质是DNA,不是蛋白质。(2)由于病毒只能在宿主细胞内生存,故应先获得含32P的细菌,即将宿主细菌在含32P的培养基中培养,获得含有32P的细菌;用T2噬菌体去感染被32P标记的细菌,待细菌细胞裂解后,释放出的噬菌体便被32P标记上了。(3)当接种噬菌体后培养时间过长,复制增殖后的噬菌体从大肠杆菌体内释放出来,导致搅拌后的上清液中有放射性。(4)一个噬菌体含有一个DNA分子,一个DNA分子有两条链,所以复制出的n个子代噬菌体,其中携带32P的噬菌体只有两个,复制时用的原材料来自大肠杆菌细胞内游离的脱氧核糖核苷酸。答案(1)①蛋白质和DNA都是遗传物质;②其遗传物质是蛋白质,不是DNA;③其遗传物质是DNA,不是蛋白质(2)将宿主细菌在含32P的培养基中培养,获得含有32P的细菌;用T2噬菌体去感染被32P标记的细菌,待细菌细胞裂解后,释放出的噬菌体便被32P标记上了(3)培养时间过长,复制增殖后的噬菌体从大肠杆菌体内释放出来(4)2大肠杆菌细胞内游离的脱氧核糖核苷酸14.某科研机构发现了一新型病毒,并对该病毒的遗传物质进行进一步研究。请思考并回答下列相关问题:(1)据研究人员介绍,该病毒的遗传物质比HIV的遗传物质更加稳定。据此可初步推测,该病毒的遗传物质是________,理由是__________________________________________________________。(2)通过化学分析的方法对该病毒的遗传物质种类进行研究,分析其五碳糖或碱基种类均可做出判断,如果____________________,则为DNA,如果____________________,则为RNA。(3)也可以用同位素标记技术研究其遗传物质种类,将宿主细胞在含有被放射性标记的核苷酸的培养基中培养,再用该病毒感染宿主细胞,一段时间后搜集子代病毒并检测其放射性。培养基中的各种核苷酸是否都需要标记?________,理由是____________________。解析DNA和RNA不同之处如表所示:五碳糖碱基结构稳定性DNA脱氧核糖T一般为双链稳定RNA核糖U一般为单链不稳定(1)DNA双链中配对碱基之间通过氢键连接,且一般呈规则的双螺旋结构,而RNA一般为单链,碱基不配对,结构不稳定,容易发生突变。(2)此小题要求分析“五碳糖和碱基”,对病毒遗传物质的种类进行判断,结合表中信息不难看出含脱氧核糖或T的为DNA,含核糖或U的为RNA。(3)进一步通过实验设计验证推测,需要注意病毒是寄生在宿主细胞中的,所以要先标记宿主细胞;依据表中信息可以看出不需要标记全部核苷酸,只需要标记T或U即可。答案(1)DNA通常DNA是双链而RNA是单链,DNA结构比RNA更稳定,不易发生变异(2)五碳糖是脱氧核糖或含碱基T五碳糖是核糖或含碱基U(3)不需要如果对各种核苷酸都进行标记,则该病毒的核酸无论是DNA还是RNA,在子代病毒中均能检测到放射性第2讲DNA分子的结构、复制以及基因的本质一、选择题1.DNA是绝大多数生物的遗传物质,关于DNA的相关说法错误的是()A.细胞在分裂之前,一定要进行DNA的复制B.碱基对排列顺序的多样性是DNA多样性的原因之一C.DNA分子杂交技术可以用来比较不同种生物DNA分子的差异D.格里菲斯(Griffith)实验证明加热杀死的S型细菌中必然存在转化因子解析有丝分裂、减数第一次分裂前是需要DNA复制的,但减数第二次分裂前是没有DNA复制的,直接分裂,A项错误;DNA多样性取决于碱基的数目和碱基对排列顺序,B项正确;每个DNA分子都有特定的碱基序列,不同种生物DNA分子是不同的,所以DNA分子杂交技术可以用来比较不同种生物DNA分子的差异,C项正确;格里菲斯的肺炎双球菌转化实验证明S型细菌中存在某种转化因子,能将R型细菌转化为S型细菌,D项正确。答案A2.在一对等位基因中,一定相同的是()A.氢键数目 B.碱基数目C.遗传信息 D.基本骨架解析等位基因是通过基因突变形成的,基因中的碱基数目和排列顺序可能不同,氢键数目也可能不同,所携带的遗传信息不同。等位基因都是有遗传效应的DNA片段,都是以磷酸、脱氧核糖交替排列形成基本骨架,D项正确。答案D3.2017年6月,深圳大学的研究人员发布重大科研成果,他们通过自主搭建的光学超分辨率平台,首次为长度仅为2500个碱基对的DNA序列拍摄了3D立体照片。下列关于DNA分子结构的叙述,错误的是()A.DNA分子中磷酸、碱基、脱氧核糖交替排列构成基本骨架B.DNA分子中,含氮碱基与脱氧核糖的数目相等C.同一单链的相邻碱基之间的结构包含磷酸二酯键D.DNA3D立体照片不属于物理模型解析DNA分子的骨架是指磷酸和脱氧核糖相间排列构成的链状结构,A项错误;双链DNA分子中,碱基与脱氧核糖是一对一的关系,二者数目相等,B项正确;同一单链的相邻碱基之间的连接方式为碱基—脱氧核糖—磷酸—脱氧核糖—碱基,相邻核苷酸之间的脱氧核糖与磷酸之间就是通过磷酸二酯链连接的,C项正确;DNA3D立体照片不属于物理模型,D项正确。答案A4.下列有关双链DNA的结构和复制的叙述,正确的是()A.DNA分子复制需要模板、原料、酶和ATP等条件B.DNA分子中每个脱氧核糖均连接着两个磷酸基团C.DNA分子一条链上相邻的碱基通过氢键连接D.复制后产生的两个子代DNA分子共含有2个游离的磷酸基团解析DNA分子复制需要模板(DNA分子的两条链)、原料(四种游离的脱氧核苷酸)、酶(解旋酶、DNA聚合酶等)和ATP等条件,A项正确;DNA分子中每个脱氧核糖连接一个或两个磷酸基团,B项错误;DNA分子一条链上相邻的碱基通过“—脱氧核糖—磷酸—脱氧核糖—”连接,C项错误;复制后产生的两个子代DNA分子共含有4个游离的磷酸基团(每个DNA分子含有2个游离的磷酸基团),D项错误。答案A5.据最新研究,蛋白laminA在维持细胞核中DNA结构的稳定性中起到了核心作用。这种蛋白能让染色质内部形成“交联”,在细胞核中限制DNA的行动。这种结构保护了染色质的完整性,同时允许DNA正常复制,下列有关叙述正确的是()A.通过DNA分子的复制,储存在DNA中的遗传信息实现稳定表达B.染色体解螺旋形成染色质,为DNA的复制创造了有利条件C.去除蛋白laminA后,染色质的运动高度分散而且不能复制D.严格的碱基互补配对原则即可保证DNA分子复制准确无误解析通过DNA分子的复制,储存在DNA中的遗传信息能稳定遗传,A项错误;染色体解螺旋形成染色质,有利于DNA打开其空间结构,为DNA的复制创造了有利条件,B项正确;由题意可知,去除蛋白laminA后,染色质的运动高度分散而且DNA复制速度较快,C项错误;DNA复制准确无误进行的原因包括其独特的双螺旋结构为复制提供了精确的模板以及严格的遵循碱基互补配对原则,D项错误。答案B6.某基因(14N)含有3000个碱基,腺嘌呤占35%。若该DNA分子以15N同位素标记的游离脱氧核苷酸为原料复制3次,再将全部复制产物置于离心管内离心,进行密度分层,得到结果如图①;然后加入解旋酶再离心,得到结果如图②。则下列有关分析正确的是()A.X层中的基因只用14N标记,Y层中的基因只用15N标记B.W层中含15N标记的胞嘧啶3150个C.W层与Z层的核苷酸数之比为1∶4D.X层中含有的氢键数是Y层的3倍解析X层中的基因中含14N标记和15N标记,Y层中的基因只含15N标记,A项错误;W层中含15N标记的胞嘧啶=450×7=3150个,B项正确;W层与Z层的核苷酸数之比为(8×2-2)∶2=7∶1,C项错误;X层中的基因中含14N标记和15N标记,共有2个DNA分子,而Y层中的基因只含15N标记,共有6个DNA分子,所以Y层中含有的氢键数是X层的3倍,D项错误。答案B7.用15N标记含有100个碱基对的DNA分子片段,碱基间的氢键共有260个。该DNA分子在14N的培养基中连续复制多次后共消耗游离的嘌呤类脱氧核苷酸1500个。下列叙述正确的是()A.该DNA片段中共有腺嘌呤60个,复制多次后含有14N的DNA分子占7/8B.若一条链中(A+G)/(T+C)<1,则其互补链中该比例也小于1C.若一条链中A∶T∶G∶C=1∶2∶3∶4,则其互补链中该比例为4∶3∶2∶1D.该DNA经复制后产生了16个DNA分子解析据题干信息可推知,该DNA分子中有60个C/G碱基对,40个A/T碱基对,故该DNA片段中,A的个数为40个,经多次复制后,子代DNA全部都含有14N;DNA分子中嘌呤碱基总数等于嘧啶碱基总数,互补链中(A+G)/(T+C)>1;DNA两条单链之间由于碱基互补配对,若一条链中A∶T∶G∶C=1∶2∶3∶4,则其互补链中该比例为2∶1∶4∶3;该DNA片段中嘌呤类碱基共100个,经多次复制后共消耗游离的嘌呤类碱基1500个,则1500=100×(2n-1),n=4,所以复制后产生了16个DNA分子。答案D8.下列有关DNA的计算中,正确的是()A.具有1000个碱基对的DNA,腺嘌呤有600个,则每一条链上都具有200个胞嘧啶B.具有m个胸腺嘧啶的DNA片段,复制n次后共需要2n·m个胸腺嘧啶C.具有m个胸腺嘧啶的DNA片段,第n次复制需要2(n-1)·m个胸腺嘧啶D.无论是双链DNA还是单链DNA,(A+G)均占总碱基数的1/2解析A选项,DNA分子中具有1000个碱基对,则共有2000个碱基,其中A和T各占600个,所以G和C各占400个,但C在DNA分子的两条链上的数量不一定相等,所以在每一条链上不一定都具有200个胞嘧啶;B选项,具有m个胸腺嘧啶的DNA片段,复制n次后共需要(2n-1)·m个胸腺嘧啶;C选项,DNA第n次复制增加的DNA数量是第(n-1)次复制后产生的DNA数量,所以具有m个胸腺嘧啶的DNA片段,第n次复制需要2(n-1)·m个胸腺嘧啶;D选项,在双链DNA上嘌呤和嘧啶各占一半,(A+G)占总碱基数的1/2,但在单链DNA上不一定。答案C9.5-BrU(5-溴尿嘧啶)既可以与A配对,又可以与C配对。将一个正常的有分裂能力的细胞,接种到含有A、G、C、T、5-BrU五种核苷酸的适宜培养基上,至少需要经过几次复制后,才能实现细胞中某DNA分子某位点上碱基对从T-A到G-C的替换()A.2次 B.3次C.4次 D.5次解析替换过程如下图所示,B代表5-BrU,由图可知至少经过3次复制后,可以实现碱基对从T—A到G—C的替换。答案B10.在研究解旋酶在DNA复制过程中的作用机制时,科研人员发现,随着解旋酶的移动和双链的打开,DNA链中的张力变小了。下列相关分析错误的是()A.原核细胞中DNA分子复制时,解旋酶与DNA聚合酶能同时发挥作用B.噬菌体遗传物质DNA的复制所需要的原料和能量全部由宿主细胞提供C.真核细胞中,DNA链张力变小只发生在细胞核中D.解旋酶缺陷可能与多种人类疾病的产生有关解析DNA分子复制时,边解旋边复制,解旋时需要解旋酶,复制时需要DNA聚合酶,所以两种酶能同时发挥作用,与生物种类无关,A项正确;噬菌体营寄生生活,其DNA复制的模板来自自身的DNA,原料、能量均由宿主细胞提供,B项正确;由题意可知,DNA复制时DNA链张力会变小,DNA复制不只发生在细胞核中,真核细胞叶绿体和线粒体中也会发生DNA复制,C项错误;解旋酶作用于氢键,解旋酶缺陷时DNA双链就无法打开,无法进行DNA复制,细胞的正常生理活动会受到影响,可能使人产生多种疾病,D项正确。答案C11.下列关于细胞增殖和DNA复制的叙述,错误的是()A.高等植物的体细胞增殖的方式是有丝分裂和无丝分裂B.基因型为XaY的个体产生了基因型为XaY的配子,原因是减数第一次分裂时同源染色体未分离C.T2噬菌体增殖时,需要宿主细胞提供解旋酶作用于磷酸二酯键D.将一个DNA分子(第1代)的一条链用15N标记,转移到含14N的环境中复制到第n代,则第n代中只含14N的DNA分子数为2n-1-1解析通常认为,高等植物的体细胞的增殖方式有有丝分裂和无丝分裂,A项正确;正常情况下,在减数分裂过程中,X、Y染色体会分离,因此在配子中不会同时存在X、Y染色体,如果基因型为XaY的个体产生了基因型为XaY的配子,原因可能是精原细胞在进行减数第一次分裂时X、Y染色体未分开,B项正确;解旋酶可作用于氢键,使氢键断裂,进而使DNA双螺旋打开,C项错误;将一个DNA分子(第1代)的一条链用15N标记,转移到含14N的环境中复制到第n代,第n代产生的DNA分子数有2n-1个,其中只有一个DNA分子含有15N,因此只含14N的DNA分子数为2n-1-1,D项正确。答案C12.关于基因、DNA与染色体的关系,下列叙述正确的是()A.所有的基因均在染色体上呈线性排列B.HIV基因可以直接整合到宿主细胞的染色体上C.染色体结构变异一定导致基因数量增加D.基因重组过程中可能发生DNA链的断裂解析基因主要位于染色体上,少数位于细胞质的叶绿体和线粒体中,A项错误;HIV基因需通过逆转录形成DNA后才能整合到宿主细胞的染色体上,B项错误;染色体片段缺失会导致基因数量减少,C项错误;基因重组包括自由组合和交叉互换,其中交叉互换过程中会发生DNA链的断裂,D项正确。答案D二、非选择题13.DNA指纹技术正发挥着越来越重要的作用,可用于亲子鉴定、侦察罪犯等方面,请思考并回答下列有关DNA指纹技术的问题:(1)DNA鉴定中,DNA探针必不可少,DNA探针是一种已知碱基顺序的DNA片段。用DNA探针检测基因所用的原理是_________________________________________________________。现在已知除了同卵双生双胞胎外,每个人的DNA是独一无二的,就好像指纹一样,这说明:________________________________。(2)为了确保实验的准确性,需要克隆出较多的DNA样品,若一个只含31P的DNA分子以被32P标记的脱氧核苷酸为原料连接复制3次后,含32P的单链占全部单链的________。(3)DNA指纹技术可应用于尸体的辨认工作中,煤矿瓦斯爆炸事故中尸体的辩认就可借助于DNA指纹技术。①如表所示为分别从尸体和死者生前的生活用品中提取的某条染色体上同一区段DNA单链的碱基序列,根据碱基配对情况判断,A、B、C三组DNA中不是同一人的是________组。A组B组C组尸体中的DNA碱基序列ACTGACGGTTGGCTTATCGAGCAATCGTGC家属提供的DNA碱基序列TGACTGCCAACCGAATAGCACGGTAAGACG②为什么从尸体与死者家属提供的死者生前的生活用品中分别提取的DNA可以完全互补配对?__________________________________________________________解析(1)DNA探针检测基因依据的是碱基互补配对原则和DNA分子的特异性。每个人的DNA独一无二,说明DNA分子具有多样性;每个人又有特定的DNA序列,说明DNA分子具有特异性。(2)一个双链被31P标记的DNA分子,在复制过程中,只能提供两条含31P的单链,复制3次后,得到8个DNA分子,16条脱氧核苷酸链,其中只有2条单链含31P,所以含32P的单链占全部单链的(16-2)/16=7/8。(3)①分析表格数据可知,A组尸体中的DNA碱基序列和家属提供的DNA碱基序列能碱基互补配对,但B组与C组的不能完全配对,说明B、C组不是同一个人的;②一个人的所有细胞都来自同一个受精卵的有丝分裂,不考虑基因突变时,家属提供的死者生前物品上的DNA与死者尸体中的DNA相同,可以完全碱基互补配对。答案(1)碱基互补配对原则和DNA分子的特异性DNA分子具有多样性和特异性(2)7/8(3)①B、C②人体所有细胞均由一个受精卵经有丝分裂产生,细胞核中均含有相同的遗传物质(或DNA)14.通常DNA分子复制从一个复制起始点开始,有单向复制和双向复制,如下图所示:放射性越高的3H-胸腺嘧啶脱氧核糖核苷(3H-脱氧胸苷),在放射自显影技术的图像上,感光还原的银颗粒密度越高。请利用放射自显影技术、低放射性3H-脱氧胸苷和高放射性3H-脱氧胸苷,设计实验以确定大肠杆菌DNA复制的方向,简要写出:(1)实验思路:____________________________________________。(2)预测实验结果和得出结论:______________________________。解析(1)依题意可知:该实验的目的是确定大肠杆菌DNA复制的方向。实验原理是:①放射性越高的3H-胸腺嘧啶脱氧核糖核苷(3H-脱氧胸苷),在放射自显影技术的图像上,感光还原的银颗粒密度越高;②3H-脱氧胸苷是DNA复制的原料;依据DNA的半保留复制,利用3H标记的低放射性和高放射性的脱氧胸苷使新形成的同一条DNA子链上出现低放射性区段和高放射性区段;③利用放射自显影技术,检测子链上银颗粒密度的高低及其分布来判断DNA复制的方向。综上分析可知该实验思路为:复制开始时,首先用含低放射性3H-脱氧胸苷培养基培养大肠杆菌,一段时间后转移到含有高放射性3H-脱氧胸苷的培养基中继续培养,用放射自显影技术观察复制起点和复制起点两侧银颗粒密度情况。(2)依据实验思路可知:若DNA分子复制为单向复制,则复制起点处银颗粒密度低,远离复制起点的一侧银颗粒密度高。若DNA分子复制为双向复制,则复制起点处银颗粒密度低,复制起点的两侧银颗粒密度高。答案(1)复制开始时,首先用含低放射性3H-脱氧胸苷培养基培养大肠杆菌,一段时间后转移到含有高放射性3H-脱氧胸苷的培养基中继续培养,用放射自显影技术观察复制起点和复制起点两侧银颗粒密度情况(2)若复制起点处银颗粒密度低,一侧银颗粒密度高,则DNA分子复制为单向复制;若复制起点处银颗粒密度低,复制起点的两侧银颗粒密度高,则DNA分子复制为双向复制第3讲基因的表达(A卷)一、选择题1.DNA是遗传信息的携带者,是主要的遗传物质。下列有关DNA的叙述,正确的是()A.孟德尔通过豌豆杂交实验发现了基因,摩尔根用实验证明了基因在染色体上B.沃森和克里克构建了DNA的双螺旋结构,提出了半保留复制方式的假说C.肺炎双球菌转化实验中,加热后S型菌失去毒性的原因是DNA失活变性D.细菌体内遗传信息的传递方向只能是DNA→RNA→蛋白质解析孟德尔通过豌豆杂交实验提出来“遗传因子”一词,但并没有发现基因,A项错误;沃森和克里克发现了DNA双螺旋结构,同时提出DNA半保留复制方式的假说,B项正确;“肺炎双球菌转化实验”中,加热后S型菌失去毒性的原因是蛋白质失活变性,而其中的DNA在温度降低后可以恢复活性,C项错误;细菌体内遗传信息的传递方向除有DNA→RNA→蛋白质,还有DNA→DNA,D项错误。答案B2.下列关于RNA的叙述,正确的是()A.同一个体不同细胞中mRNA种类完全不同B.一种tRNA只能识别并转运一种氨基酸C.rRNA不参与蛋白质的合成过程D.RNA分子中不含氢键解析同一个体不同细胞中合成的蛋白质不完全相同,所以mRNA的种类也不完全相同,A项错误;tRNA具有特异性,一种tRNA只能识别并转运一种氨基酸,B项正确;rRNA是核糖体的组成成分,参与蛋白质的合成过程,C项错误;tRNA中存在双链结构,含有氢键,D项错误。答案B3.下列关于转录与翻译的叙述,正确的是()A.RNA聚合酶可催化两个氨基酸之间形成肽键B.由于密码子的简并性,每种氨基酸都由多个密码子决定C.转录过程中有氢键的形成,翻译过程中无氢键的形成D.转录可发生在叶绿体内,翻译需要多种RNA参与解析在DNA转录时需要RNA聚合酶进行解旋和催化两个核糖核苷酸之间形成磷酸二酯键,A项错误;由于密码子的简并性,一种氨基酸可以由一种或几种密码子决定,B项错误;转录和翻译过程中都有氢键形成,C项错误;叶绿体中含有少量的DNA,也能控制某些蛋白质的合成,所以存在转录和翻译过程,翻译过程需要mRNA、tRNA和核糖体参与,核糖体的主要成分是rRNA与蛋白质,D项正确。答案D4.如表是真核生物细胞内三种RNA聚合酶的主要功能与分布,下列说法错误的是()名称RNA聚合酶ⅠRNA聚合酶ⅡRNA聚合酶Ⅲ主要功能合成rRNA合成mRNA合成tRNA分布核仁核液核液A.三种RNA均以DNA为模板合成B.三种酶发挥作用形成的产物均可参与翻译过程C.RNA聚合酶的合成场所与其发挥作用的场所相同D.任何一种RNA聚合酶活性变化都会影响其他两种酶的合成解析三种RNA都是通过转录形成的,转录是以DNA的一条链为模板进行的,A项正确;蛋白质合成过程中,需要mRNA为模板,tRNA为转运氨基酸的工具,还需要rRNA参与组成的核糖体作为合成场所。所以蛋白质合成过程中均需要这三种酶发挥作用形成的产物(rRNA、mRNA、tRNA)的参与,B项正确;RNA聚合酶属于蛋白质,在核糖体中合成。据表可知,RNA聚合酶Ⅰ在核仁中起作用,RNA聚合酶Ⅱ和RNA聚合酶Ⅲ在核液中起作用,所以这三种RNA聚合酶的合成场所与其发挥作用的场所不同,C项错误;任一种RNA聚合酶活性变化都会影响翻译的正常进行,而RNA聚合酶的化学本质是蛋白质,需要通过翻译合成,因此任何一种RNA聚合酶活性变化都会影响其他两种酶的合成,D项正确。答案C5.下图表示菠菜体细胞内的四个重要生理过程。相关叙述正确的是()A.细胞核内能完成甲、乙、丙、丁生理过程B.叶肉细胞线粒体内能完成甲、乙、丙、丁生理过程C.根细胞核糖体内进行乙、丙过程D.叶肉细胞叶绿体内能进行甲、乙、丙生理过程解析由图可知,甲为DNA的复制,乙为转录,丙为翻译,丁为有氧呼吸的过程。DNA的复制和转录可在细胞核中进行,翻译在核糖体上完成,有氧呼吸在细胞质基质和线粒体中完成;叶肉细胞线粒体内能完成DNA的复制、转录和翻译,以及将丙酮酸分解,完成有氧呼吸的二、三阶段,但葡萄糖分解为丙酮酸是在细胞质基质中完成的;根细胞核糖体上只能进行翻译过程;叶肉细胞叶绿体内能进行DNA的复制、转录和翻译过程。答案D6.将牛催乳素基因用32P标记后导入小鼠乳腺细胞,选取仅有一条染色体上整合有单个目的基因的某个细胞进行体外培养。下列叙述错误的是()A.小鼠乳腺细胞中的核酸含有5种碱基和8种核苷酸B.该基因转录时,遗传信息通过模板链传递给mRNAC.连续分裂n次后,子细胞中32P标记的细胞占1/2n+1D.该基因翻译时所需tRNA与氨基酸种类数不一定相等解析小鼠乳腺细胞中的核酸含有A、G、C、T、U五种碱基,八种核苷酸,故A项正确;基因是具有遗传效应的DNA片段,转录是以基因的一条链为模板指导合成RNA的过程,故B项正确;连续分裂n次,子细胞中被标记的细胞占1/2n-1,故C项错误。答案C7.研究发现,人类免疫缺陷病毒(HIV)携带的RNA在宿主细胞内不能直接作为合成蛋白质的模板。依据中心法则(下图),下列相关叙述错误的是()A.合成子代病毒蛋白质外壳的完整过程至少要经过④②③环节B.侵染细胞时,病毒中的蛋白质不会进入宿主细胞C.通过④形成的DNA可以整合到宿主细胞的染色体DNA上D.科学家可以研发特异性抑制逆转录酶的药物来治疗艾滋病解析人类免疫缺陷病毒(HIV)属反转录病毒的一种,主要攻击人体的淋巴细胞,在侵染过程中HIV整体进入T淋巴细胞内,故B选项是错误的;HIV的遗传物质RNA,经逆转录形成的DNA可整合到患者细胞的基因组中,再通过病毒DNA的复制、转录和翻译,每个被感染的细胞就成功生产出大量的HIV,然后由被感染的细胞裂解释放出来;根据题图中的中心法则可知病毒DNA是通过逆转录过程合成,可见科研中可以研发抑制逆转录酶的药物来治疗艾滋病。故A、C、D选项均正确。答案B8.下列有关遗传信息、密码子和反密码子的叙述,错误的是()A.DNA中的遗传信息是通过转录传递给mRNA的B.一种密码子在不同细胞中决定不同种氨基酸C.不同密码子编码同种氨基酸可增强密码子的容错性D.反密码子是tRNA中与mRNA碱基互补配对的三个碱基解析DNA中的遗传信息通过转录传递给mRNA,然后再由mRNA翻译成蛋白质,A项正确;密码子具有通用性,生物界共用一套遗传密码,B项错误;不同密码子编码同种氨基酸,在基因突变或其他原因导致mRNA上密码子出错时,生物性状可以不改变,所以可以增强密码子的容错性,C项正确;反密码子是指tRNA上的三个碱基,这三个碱基可以与mRNA上的密码子碱基互补配对,D项正确。答案B9.如图表示遗传信息在生物大分子间的传递规律,①、②、③、④、⑤、⑥分别表示结构或物质。以下有关说法正确的是()A.图1、图2所示的生理过程完全相同B.图1表示细菌细胞内基因的表达过程,图2表示酵母菌细胞内核基因的表达过程C.图2信息反映多个核糖体完成一条多肽链的合成,有利于提高蛋白质的合成速率D.图1所示过程的方向是从右向左,②、③、④、⑤表示正在合成的多肽链解析图1表示翻译过程,图2表示边转录边翻译过程,两图所示的生理过程不完全相同,A项错误;图1中的①表示mRNA,且图1表示翻译过程,在细菌体内转录与翻译是同时进行的,故该过程不可以发生在细菌细胞内,而图2中的①是DNA,整个过程表示边转录边翻译的过程,可表示原核生物(细菌)细胞内基因的表达过程,不能表示真核生物(酵母菌)细胞核内基因的表达过程,B项错误;图2信息反映多个核糖体完成多条多肽链的合成,有利于提高蛋白质的合成速率,C项错误;图1中②、③、④、⑤表示正在合成的多肽链,从肽链的长短可知翻译的方向是从右向左,D项正确。答案D10.如图为细胞膜上神经递质受体基因的复制与表达等过程。下列相关分析不正确的()A.①过程需要模板、原料、酶和能量四个条件B.方便起见,获得该基因mRNA的最佳材料是口腔上皮细胞C.图中①②③过程一定发生碱基互补配对D.人的囊性纤维病体现了基因可通过控制蛋白质的结构直接控制生物体的性状解析DNA的复制需要模板、4种脱氧核糖核苷酸为原料、酶和能量等条件,A项正确;神经细胞与口腔上皮细胞即使核DNA相同,但转录而成的mRNA不同,获得该基因mRNA的最佳材料只能来源于神经细胞,B项错误;结合图示和题干信息可知,①②③依次代表神经细胞DNA的复制、转录和翻译过程,三个过程都发生碱基的互补配对,C项正确;囊性纤维病患者细胞中,编码一个跨膜蛋白(CFTR)的基因缺失了3个碱基,导致CFTR蛋白缺少苯丙氨酸,进而影响了CFTR蛋白的结构,使CFTR转运氯离子的功能异常,导致患者支气管中黏液增多,管腔受阻,细菌在肺部大量生长繁殖,最终使肺功能严重受损,D项正确。答案B二、非选择题11.回答下列有关RNA的问题:(1)组成RNA的基本单位是________,能被________(染色剂)染成红色,细胞中常见的RNA有三种,其来源都是________,其核糖体RNA的合成场所是________。(2)1982年美国科学家Cech和AItman发现大肠杆菌RNaseP(一种酶)的蛋白质部分除去后,在体外高浓度Mg2+存在下,留下的RNA部分仍具有与全酶相同的催化活性,这事实说明了________________________________________________________。后来发现四膜虫L19RNA在一定条件下能专一地催化某些小分子RNA的水解与合成,实际上L19RNA就具有了与________和________相同的功能。解析(1)组成RNA的基本单位是核糖核苷酸,能被吡罗红染成红色,细胞中常见的RNA有三种,其来源都是以DNA分子的一条链为模板通过转录合成的,其中核糖体RNA的合成场所是核仁。(2)大肠杆菌RNaseP(一种酶)的蛋白质部分除去后,在体外高浓度Mg2+存在下,留下的RNA部分仍具有与全酶相同的催化活性,这个事实说明了RNA具有催化功能。四膜虫L19RNA在一定条件下能专一地催化某些小分子RNA的水解与合成,这说明L19RNA具有RNA水解酶(核糖核酸酶)与RNA聚合酶相同的功能。答案(1)核糖核苷酸吡罗红以DNA分子的一条链为模板合成的核仁(2)RNA具有催化功能RNA水解酶(核糖核酸酶)RNA聚合酶12.如图表示人体内苯丙氨酸的代谢途径。请根据图示回答下列问题:(1)根据已学知识及示意图判断,体内缺乏酶________(填序号)可使人患上苯丙酮尿症,此病诊断的方法是检测患者的尿液中是否含有过多的________。(2)根据该图,有人认为体内缺少酶①时,一定会患白化病。你认为他的说法________(填“正确”或“不正确”),说明理由:_________________________________________________________。(3)由上述实例可以看出基因通过控制______________________,进而控制生物的性状。(4)若控制酶①合成的基因发生变异,会引起多个性状改变;尿黑酸症(尿黑酸在人体内积累使人尿液中含有尿黑酸)与图中几个基因都有代谢联系。这说明______________________________________________________。解析(1)引起苯丙酮尿症的原因是患者体细胞中缺少一种酶(酶①),致使体内的苯丙氨酸不能沿正常途径转变成酪氨酸,只能转变成苯丙酮酸,患者尿液中会含有过多的苯丙酮酸。(2)如果体内缺失酶①,苯丙氨酸不能合成酪氨酸,但人体中的酪氨酸还可以从食物中获取等,所以如果酶①缺少,但饮食中注意摄入适量的酪氨酸,则不一定会患白化病。(3)由图示可知,生物的性状如苯丙酮尿症、白化病、尿黑酸症等与酶有直接关系,所以可以看出基因通过控制酶的合成进而控制生物性状。(4)由“基因发生变异,会引起多个性状改变”可知,一个基因可以影响多个性状;由“尿黑酸症与图中几个基因都有代谢联系”可知,一种性状可由多个基因控制。答案(1)①苯丙酮酸(2)不正确体内缺乏酶①时,虽然不能有苯丙氨酸→酪氨酸途径,但是酪氨酸仍可以从食物中获取或由其他途径转化而来,在酶⑤的作用下转变为黑色素,因此人体内缺乏酶①不一定会患白化病(3)酶的合成来控制代谢(4)一个基因可影响多个性状,一种性状也可由多个基因控制13.信号肽位于分泌蛋白的氨基端,一般由1530个氨基酸组成。图1为信号肽序列合成后,被信号识别颗粒(SRP)所识别,蛋白质合成暂停或减缓。SRP将核糖体携带至内质网上,蛋白质合成重新开始。在信号肽的引导下,新合成的蛋白质进入内质网腔。图2为图1的部分放大示意图。请分析回答下列问题:(1)观察图1,信号肽的作用是________________________________,从内质网腔输出的蛋白质并不包含信号肽,其原因是______________________________________________________。(2)图1中核糖体受体是一种多肽转运装置,当核糖体受体和核糖体接触后,在膜上聚集而形成孔道,则孔道的作用是_________________________________________________________。(3)在病毒侵染等多种因素的作用下,内质网中错误折叠或未折叠的蛋白质一般不会被运输到________进一步修饰加工,而会在内质网中大量堆积,此时细胞通过改变基因表达减少新蛋白质的合成或增加识别并降解错误折叠蛋白质的相关分子,进行细胞水平的________调节。(4)若图2中α链的鸟嘌呤与尿嘧啶之和占碱基总数的54%,α链及其模板链对应区段的碱基中鸟嘌呤分别占26%、30%,则与α链对应的DNA区段中腺嘌呤所占的碱基比例为________。(5)若控制图2中蛋白质合成的基因含有如下碱基:GTTGCTGAGCAGGATGCT,变异后碱基为:GTTGCTGAGTAGGATGCT,该基因突变的原因是发生了碱基对的________。(6)科学家用人工合成的mRNA为模板进行细胞外蛋白质合成实验。若以…ACACACACAC…为mRNA,则合成苏氨酸和组氨酸的多聚体;若以…CAACAACAACAA…为mRNA,则合成谷氨酰胺、天冬酰胺或苏氨酸的三种多聚体。据此推测组氨酸的密码子是________。解析(1)由图1可以看出,信号肽被信号识别颗粒(SRP)识别,SRP将核糖体携带至内质网上,在信号肽的引导下,新合成的蛋白质进入内质网腔,所以信号肽的作用是引导新合成的蛋白质进入内质网腔,内质网腔中有信号肽酶,信号肽在内质网腔中被信号肽酶切除(水解),所以从内质网腔输出的蛋白质并不包含信号肽。(2)图1中核糖体受体和核糖体接触后,在膜上形成孔道,使信号肽及其相连的新合成的蛋白质通过,从而进入内质网腔。(3)错误折叠或未折叠的蛋白质一般不会被运输到高尔基体进一步修饰加工。由题意可知,系统作用的结果反过来作用于系统本身,进行的是负反馈调节。(4)设α链共有碱基100个,模板链对应区段的碱基中鸟嘌呤为30个,推知α链中对应的胞嘧啶为30个,由于α链中鸟嘌呤为26个,α链中尿嘧啶和腺嘌呤之和为100-30-26=44个,α链对应的模板链中腺嘌呤和胸腺嘧啶之和为44个,α链对应的双链DNA区段中腺嘌呤为44个,腺嘌呤所占的碱基比例为44÷200=22%。(5)由控制图2中蛋白质合成的基因变异前后的碱基对比可知,第10位碱基C变异为T,发生了碱基对的替换。(6)以…ACACACACAC…为mRNA,密码子有ACA和CAC两种,合成的是苏氨酸和组氨酸的多聚体;以…CAACAACAACAA…为mRNA,密码子为CAA、AAC、ACA三种,合成的是谷氨酰胺、天冬酰胺或苏氨酸的三种多聚体。可以推测苏氨酸的密码子是ACA,组氨酸的密码子是CAC。答案(1)引导新合成的蛋白质进入内质网腔信号肽在内质网腔中被信号肽酶切除(水解)(2)使信号肽及其相连的新合成的蛋白质通过(3)高尔基体(负)反馈(4)22%(5)替换(6)CAC(B卷)一、选择题1.如图为tRNA的结构示意图。以下叙述正确的是()A.合成此tRNA的结构是核糖体B.每种tRNA在a处可以携带多种氨基酸C.图中b处上下链中间连接的是氢键D.c处表示密码子,可以与mRNA碱基互补配对解析合成此tRNA的结构是细胞核、线粒体、叶绿体等,A项错误;每种tRNA在a处可以携带一种氨基酸,B项错误;图中b处上下链中间连接的是氢键,C项正确;c处表示反密码子,与mRNA上的密码子配对,D项错误。答案C2.下图甲所示为基因表达过程,图乙为中心法则,①~⑤表示生理过程;图丙表示某真核生物的DNA复制过程。下列叙述正确的是()A.图甲为染色体DNA上的基因表达过程,需要多种酶参与B.图甲所示过程为图乙中的①②③过程C.图乙中涉及碱基A与U配对的过程为②③④⑤D.从图丙中可以看出解旋需DNA解旋酶及DNA聚合酶的催化且需要消耗ATP解析图甲中所示基因的转录、翻译是同时进行的,为原核生物基因的表达,原核生物无染色体;图甲所示过程为图乙中的②③过程;图乙中①为DNA的复制过程,不涉及A与U的配对,②为转录,③为翻译,④为RNA的自我复制,⑤为逆转录,这四个过程均涉及碱基A与U配对;图丙中,DNA复制过程中的解旋不需DNA聚合酶的催化。答案C3.如图为T4噬菌体侵染大肠杆菌后,大肠杆菌内放射性RNA与T4噬菌体DNA及大肠杆菌DNA的杂交结果。下列叙述错误的是()A.可在培养基中加入3H尿嘧啶用以标记RNAB.参与分子杂交的放射性RNA为相应DNA的转录产物C.第0min时,与DNA杂交的RNA来自T4噬菌体及大肠杆菌的转录D.随着侵染时间增加,噬菌体DNA的转录增加,细菌基因活动受到抑制解析尿嘧啶是RNA特有的碱基,因此可以用3H尿嘧啶标记RNA,A项正确;RNA是以DNA的一条链为模板通过转录合成的,因此参与分子杂交的放射性RNA为相应DNA的转录产物,B项正确;在第0min时,T4噬菌体还没有侵染大肠杆菌,其体内不存在T4噬菌体的DNA,因此与DNA杂交的RNA不可能来自T4噬菌体,C项错误;题图显示随着侵染时间增加,和T4噬菌体DNA杂交的放射性RNA所占百分比越来越高,而和大肠杆菌DNA杂交的放射性RNA所占百分比越来越低,说明噬菌体DNA的转录增加,细菌基因活动受到抑制,D项正确。答案C4.人体生物钟与下丘脑SCN细胞中PER蛋白浓度呈周期性变化有关,与PER蛋白浓度变化有关的生理过程如图所示。下列叙述正确的是()A.由per基因两条模板链转录成的mRNA碱基排列顺序不同B.图中②过程的mRNA在核糖体上移动的方向是从右向左的C.SCN细胞通过③过程调节PER蛋白浓度的机制是反馈调节D.下丘脑能够调控生物节律是因为SCN细胞中含有per基因解析per基因的两条链中只有一条链可以作为模板转录形成mRNA,A项错误;图中②过程表示翻译,根据图中肽链的长度判断,释放过程中核糖体在mRNA上移动的方向是从右向左的,B项错误;图中③过程中,当PER蛋白浓度过高时会被降解,表现为负反馈调节,C项正确;人体生物钟与下丘脑SCN细胞中PER蛋白浓度呈周期性变化有关,而PER蛋白的合成受per基因控制,而人体所有细胞中都含有该基因,因此下丘脑能够调控生物节律是SCN细胞中per基因选择性表达的结果,D项错误。答案C5.如图为人体内遗传信息传递的部分图解,其中a、b、c、d表示生理过程。下列有关叙述正确的是()A.a过程需要某种蛋白质的催化,c过程需要用到某种核酸参与运输B.b过程应为RNA的加工过程,剪切掉了部分脱氧核苷酸C.基因表达过程中可同时进行a过程和c过程D.d过程形成的促甲状腺激素释放激素可同时作用于垂体和甲状腺解析图中a过程表示转录,需要RNA聚合酶的催化,而RNA聚合酶的本质是蛋白质,c过程表示翻译,需要用到tRNA参与转运氨基酸,A项正确;据图可知,b过程应为RNA的加工过程,剪切掉了部分核糖核苷酸,RNA中不含脱氧核苷酸,B项错误;人体细胞属于真核细胞,a过程(转录)发生在细胞核内,而c过程(翻译)发生在核糖体上,转录后形成的mRNA经核孔进入细胞质中与核糖体结合进行翻译,故C项错误;促甲状腺激素释放激素只能作用于垂体,促进垂体分泌促甲状腺激素,而不能直接作用于甲状腺,D项错误。答案A6.如图为真核细胞内细胞核中某基因的结构及变化示意图(基因突变仅涉及图中1对碱基改变)。下列相关叙述中,错误的是()A.基因1链中相邻碱基之间通过“—脱氧核糖—磷酸—脱氧核糖—”连接B.基因突变导致新基因中(A+T)/(G+C)的值减小而(A+G)/(T+C)的值增大C.RNA聚合酶进入细胞核参加转录过程,能催化核糖核苷酸形成mRNAD.基因复制过程中1链和2链均为模板,复制后形成的两个基因中遗传信息相同解析基因的一条脱氧核苷酸链中相邻碱基通过“—脱氧核糖—磷酸—脱氧核糖—”连接,A项正确;图示基因突变时A—T碱基对被G—C碱基对替换,新基因中(A+T)/(G+C)的值减小而(A+G)/(T+C)的值不变,B项错误;RNA聚合酶在细胞核中参加转录过程,C项正确;DNA复制时两条母链均为模板,复制形成的两个基因相同,D项正确。答案B7.下列有关基因与性状的关系的叙述,正确的是()A.基因表达过程包括基因的自我复制、转录、逆转录和翻译等过程B.位于线粒体上的基因的遗传也遵循孟德尔遗传定律C.性状均受一对等位基因的控制D.基因突变不一定会导致性状改变,性状改变也不一定是基因突变所致解析基因表达过程包括转录和翻译,A项错误;孟德尔遗传定律适用于进行有性生殖的真核生物的细胞核基因的遗传,而位于线粒体上的基因的遗传不遵循孟德尔遗传定律,B项错误;性状与基因不是简单的一一对应关系,一个基因可以控制一个性状,也可以控制多个性状,一个性状可以由一个基因控制,也可以由多个基因共同控制,C项错误;由于密码子具有简并性,基因突变不一定会导致性状改变,性状改变也不一定是基因突变所致,也可由基因重组和染色体变异引起,D项正确。答案D8.apoB基因在肠上皮细胞中表达时,由于mRNA中某碱基C通过脱氨基作用发生了替换,使密码子CAA变成了终止密码子UAA,最终合成的蛋白质缺少了羧基端的部分氨基酸序列。下列叙述正确的是()A.该蛋白质结构异常的根本原因是基因突变B.mRNA与RNA聚合酶结合后完成翻译过程C.该mRNA翻译时先合成羧基端的氨基酸序列D.脱氨基作用未改变该mRNA中嘧啶碱基比例解析该蛋白质结构异常的根本原因是mRNA中某碱基C通过脱氨基作用发生了替换,A项错误;RNA聚合酶催化RNA的形成,B项错误;根据题干分析可知,该mRNA释放时只合成氨基端的氨基酸序列,C项错误;由于mRNA中某碱基C通过脱氨基作用发生了替换,使密码子CAA变成了终止密码子UAA,因此脱氨基作用未改变该mRNA中嘧啶碱基比例,D项正确。答案D9.PEP为油菜细胞中的一种中间代谢产物。在两对独立遗传的等位基因A/a、B/b的控制下,可转化为油脂或蛋白质。某科研组研究出产油率更高的油菜品种。基本原理如图。下列说法错误的是()A.该研究可能是通过抑制基因B的翻译来提高产油率B.基因A与物质C在化学组成上的区别是前者含有胸腺嘧啶和脱氧核糖C.过程①和过程②所需的嘌呤碱基数量一定相同D.基因A和基因B位置的互换属于染色体变异解析分析图示可知,要提高油菜产油量必须尽量让更多的PEP转化为油脂,这样就必须抑制酶b的合成,促进酶a的合成,而基因B经诱导转录后形成的双链RNA会抑制酶b合成过程中的翻译阶段,所以该研究是通过抑制基因B的翻译来提高产油率,A项正确;基因A为有遗传效应的DNA片段,物质C为双链RNA,因此二者在化学组成上的区别是前者含有胸腺嘧啶和脱氧核糖,B项正确;分别以基因B的2条链为模板转录形成的RNA链之间能互补配对形成双链,所以过程①和过程②所需的嘌呤碱基数量不一定相同,C项错误;依题意可知,基因A和基因B所在的染色体属于非同源染色体,因此基因A和基因B所在位置的互换属于染色体结构变异中的易位,D项正确。答案C10.科学家通过实验发现,某些长翅果蝇幼虫在25℃下培养孵化,4~7天后转移到35~37℃的环境中处理6~24h,部分果蝇发育为残翅。下列分析中,错误的是()A.若残翅果蝇的后代均为长翅,说明这些果蝇可能没有发生突变B.残翅果蝇的出现,可能与发育过程中某些酶的活性改变有关C.该实验说明残翅果蝇发育过程中长翅基因一直没有表达D.该实验说明生物体的性状并非只受到基因的影响解析长翅果蝇幼虫在25℃下培养孵化,4~7天后转移到35~37℃的环境中处理6~24h,部分果蝇发育为残翅,可能原因是遗传物质改变,即发生可遗传变异,另一个可能原因是仅由环境引起,发生了不可遗传的变异。观察所产生的部分残翅果蝇的子代的性状,若均为长翅,则该变异是由环境引起的,即温度影响了某些酶的活性;若为残翅,则该变异是由遗传物质发生改变引起的,A、B两项正确;该实验也说明基因控制性状,同时也受环境的影响,D项正确;该实验不能说明长翅基因没有表达,C项错误。答案C11.端粒酶由RNA和蛋白质组成,该酶能结合到端粒上,以自身的RNA为模板合成端粒DNA的一条链。下列叙述正确的是()A.大肠杆菌拟核的DNA中含有端粒B.端粒酶中的蛋白质为RNA聚合酶C.正常人细胞的每条染色体两端都含有端粒DNAD.正常体细胞的端粒DNA随细胞分裂次数增加而变长解析每条染色体的两端都有一段特殊序列的DNA,称为端粒。大肠杆菌是原核生物,原核生物中没有染色体,不含端粒,A项错误;从试题信息可知,端粒酶中的蛋白质是逆转录酶,而非RNA聚合酶,B项错误;正常人细胞的每条染色体两端都含有端粒DNA,C项正确;端粒DNA序列在每次细胞分裂后会缩短一截,所以正常体细胞的端粒DNA随细胞分裂次数增加而变短,D项错误。答案C二、非选择题12.2012年诺贝尔化学奖授予在G蛋白偶联受体领域做出杰出贡献的科学家。G蛋白偶联受体调控着细胞对激素、神经递质的大部分应答。下图表示位于甲状腺细胞膜内侧的G蛋白在与促甲状腺激素受体结合形成G蛋白偶联受体后被活化,进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论