版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳126中学2025届九上数学期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2π B.3π C.4π D.π2.在Rt△ABC中,∠C=90°,tanA=,则sinA的值为()A. B. C. D.3.在Rt△ABC中,∠C=90°,∠B=35°,AB=3,则BC的长为()A.3sin35° B. C.3cos35° D.3tan35°4.对于二次函数,下列说法正确的是()A.图象开口方向向下; B.图象与y轴的交点坐标是(0,-3);C.图象的顶点坐标为(1,-3); D.抛物线在x>-1的部分是上升的.5.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A. B. C. D.6.已知二次函数,当自变量取时,其相应的函数值小于0,则下列结论正确的是()A.取时的函数值小于0B.取时的函数值大于0C.取时的函数值等于0D.取时函数值与0的大小关系不确定7.经过两年时间,我市的污水利用率提高了.设这两年污水利用率的平均增长率是,则列出的关于的一元二次方程为()A. B.C. D.8.对于反比例函数,下列说法错误的是()A.它的图像在第一、三象限B.它的函数值随的增大而减小C.点为图像上的任意一点,过点作轴于点.的面积是.D.若点和点在这个函数图像上,则9.如图一块直角三角形ABC,∠B=90°,AB=3,BC=4,截得两个正方形DEFG,BHJN,设S1=DEFG的面积,S2=BHJN的面积,则S1、S2的大小关系是()A.S1>S2 B.S1<S2 C.S1=S2 D.不能确定10.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.11.下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔12.如图,AB,AM,BN分别是⊙O的切线,切点分别为P,M,N.若MN∥AB,∠A=60°,AB=6,则⊙O的半径是()A. B.3 C. D.二、填空题(每题4分,共24分)13.如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是___________个.14.如图,在直角三角形中,,是边上一点,以为边,在上方作等腰直角三角形,使得,连接.若,,则的最小值是_______.15.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.16.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是_____cm.17.布袋中装有3个红球和4个白球,它们除颜色外其余都相同,如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是_______.18.如图,在平面直角坐标系中,抛物线与轴交于点,过点作轴的平行线交抛物线于点.为抛物线的顶点.若直线交直线于点,且为线段的中点,则的值为_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=1.(1)求反比例函数的解析式;(2)求cos∠OAB的值;(1)求经过C、D两点的一次函数解析式.20.(8分)已知关于x的一元二次方程.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为,,且,求m的值.21.(8分)已知:关于x的方程,根据下列条件求m的值.(1)方程有一个根为1;(2)方程两个实数根的和与积相等.22.(10分)如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,求证:△EAF∽△CBA;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.23.(10分)已知抛物线y=x2﹣2和x轴交于A,B(点A在点B右边)两点,和y轴交于点C,P为抛物线上的动点.(1)求出A,C的坐标;(2)求动点P到原点O的距离的最小值,并求此时点P的坐标;(3)当点P在x轴下方的抛物线上运动时,过P的直线交x轴于E,若△POE和△POC全等,求此时点P的坐标.24.(10分)若一条圆弧所在圆半径为9,弧长为,求这条弧所对的圆心角.25.(12分)小明、小亮两人用如图所示的两个分隔均匀的转盘做游戏:分别转动两个转盘,转盘停止后,将两个指针所指数字相加(若指针恰好停在分割线上,则重转一次).如果这两个数字之和小于8(不包括8),则小明获胜;否则小亮获胜。(1)利用列表法或画树状图的方法表示游戏所有可能出现的结果;(2)这个游戏对双方公平吗?请说明理由.26.如图,直线y=1x+1与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=1.(1)求H点的坐标及k的值;(1)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;(3)点N(a,1)是反比例函数y=(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.
参考答案一、选择题(每题4分,共48分)1、A【分析】连接OC、OB,求出圆心角∠AOB的度数,再利用弧长公式解答即可.【详解】解:连接OC、OB∵六边形ABCDEF为正六边形,∴∠COB==60°,∵OA=OB∴△OBC是等边三角形,∴OB=OC=BC=6,弧BC的长为:.故选:A.【点睛】此题考查了扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,解题的关键是掌握扇形的弧长公式.2、B【分析】由题意直接根据三角函数的定义进行分析即可求解.【详解】解:∵在Rt△ABC中,∠C=90°,tanA=,∴可以假设BC=k,AC=2k,∴AB=k,∴sinA==.故选:B.【点睛】本题考查同角三角函数的计算,解题本题的关键是明确sinA等于对边与斜边的比.3、C【分析】根据余弦定义求解即可.【详解】解:如图,∵∠C=90°,∠B=35°,AB=3,cos35°=,∴BC=3cos35°.故选:C.【点睛】本题考查了锐角三角函数,属于基础题型,熟练掌握余弦的定义是解此题的关键.4、D【解析】二次函数y=2(x+1)2-3的图象开口向上,顶点坐标为(-1,-3),对称轴为直线x=-1;当x=0时,y=-2,所以图像与y轴的交点坐标是(0,-2);当x>-1时,y随x的增大而增大,即抛物线在x>-1的部分是上升的,故选D.5、A【解析】试题分析:根据∠ABD的度数可得:弧AD的度数为110°,则弧BD的度数为70°,则∠BCD的度数为35°.考点:圆周角的性质6、B【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=,设抛物线与x轴交于点A、B,∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,故选B.【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.7、A【分析】设这两年污水利用率的平均增长率是,原有污水利用率为1,利用原有污水利用率(1+平均每年污水利用率的增长率=污水利用率,列方程即可.【详解】解:设这两年污水利用率的平均增长率是,由题意得出:故答案为:A.【点睛】本题考查的知识点是用一元二次方程解决实际问题,解题的关键是根据题目找出等量关系式,再列方程.8、B【分析】对反比例函数化简得,所以k=>0,当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A、∵k=>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵k=,根据反比例函数中k的几何意义可得的面积为=,故本选项正确;D、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=﹣1<0,x2=﹣<0,且x1>x2,∴,故本选项正确.故选:B.【点睛】题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.9、B【分析】根据勾股定理求出AC,求出AC边上的高BM,根据相似三角形的性质得出方程,求出方程的解,即可求得S1,如图2,根据相似三角形的性质列方程求得HJ=,于是得到S2=()2>()2,即可得到结论.【详解】解:如图1,设正方形DEFG的边长是x,∵△ABC是直角三角形,∠B=90°,AB=3,BC=4,∴由勾股定理得:AC=5,过B作BM⊥AC于M,交DE于N,由三角形面积公式得:BC×AB=AC×BM,∵AB=3,AC=5,BC=4,∴BM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DE∥AC,∴△BDE∽△ABC,∴=,∴=,∴x=,即正方形DEFG的边长是;∴S1=()2,如图2,∵HJ∥BC,∴△AHJ∽△ABC,∴=,即=,∴HJ=,∴S2=()2>()2,∴S1<S2,故选:B.【点睛】本题考查了相似三角形的性质和判定,三角形面积公式,正方形的性质的应用,熟练掌握相似三角形的判定和性质是解题的关键.10、A【分析】首先根据线y=kx+b经过第一、二、四象限,可得k<0,b>0,再根据k<0,b>0判断出直线y=bx+k的图象所过象限即可.【详解】根据题意可知,k<0,b>0,∴y=bx+k的图象经过一,三,四象限.故选A.【点睛】此题主要考查了一次函数y=kx+b图象所过象限与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.11、D【解析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【详解】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、D【分析】根据题意可判断四边形ABNM为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO≌△BPO,可得AP=BP=3,在直角△APO中,利用三角函数可解出半径的值.【详解】解:连接OP,OM,OA,OB,ON∵AB,AM,BN分别和⊙O相切,∴∠AMO=90°,∠APO=90°,∵MN∥AB,∠A=60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO和△BPO中,,△APO≌△BPO(AAS),∴AP=AB=3,∴tan∠OAP=tan30°==,∴OP=,即半径为.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.二、填空题(每题4分,共24分)13、【分析】根据几何体的三视图分析即可得出答案.【详解】通过主视图和左视图可知几何体有两层,由俯视图可知最底层有3个小正方体,结合主视图和左视图知第2层有1个小正方体,所以共4个小正方体.故答案为4【点睛】本题主要考查根据三视图判断组成几何体的小正方体的个数,掌握三视图的知识是解题的关键.14、【分析】过点E作EH⊥直线AC于点H,利用AAS定理证明△BCD≌△DEH,设CD=x,利用勾股定理求,然后利用配方法求其最小值,从而使问题得解.【详解】解:过点E作EH⊥直线AC于点H,由题意可知:∠EDA+∠BDC=90°,∠BDC+∠DBC=90°∴∠EDA=∠DBC又∵∠C=∠EHD,BD=DE∴△BCD≌△DEH∴HD=BC=4设CD=x,则EH=xAH=∴在Rt△AEH中,当x=时,有最小值为∴AE的最小值为故答案为:【点睛】本题考查全等三角形的判定,勾股定理及二次函数求最值,综合性较强,正确添加辅助线是本题的解题关键.15、等【解析】根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,所以解析式满足a<0,b=0,c=0即可.【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,例如:.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.16、37.1【分析】根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【详解】如图,设点O为外圆的圆心,连接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣11)cm,根据题意得:r2=(r﹣11)2+302,解得:r=37.1,∴这个摆件的外圆半径长为37.1cm,故答案为37.1.【点睛】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是解本题的关键.17、【分析】由题意根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.【详解】解:∵一个布袋里装有3个红球和4个白球,共7个球,∴摸出一个球摸到红球的概率为:,故答案为:.【点睛】本题主要考查概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.18、2【解析】先根据抛物线解析式求出点坐标和其对称轴,再根据对称性求出点坐标,利用点为线段中点,得出点坐标;用含的式子表示出点坐标,写出直线的解析式,再将点坐标代入即可求解出的值.【详解】解:∵抛物线与轴交于点,∴,抛物线的对称轴为∴顶点坐标为,点坐标为∵点为线段的中点,∴点坐标为设直线解析式为(为常数,且)将点代入得∴将点代入得解得故答案为:2【点睛】考核知识点:抛物线与坐标轴交点问题.数形结合分析问题是关键.三、解答题(共78分)19、(1);(2);(1).【解析】试题分析:(1)设点D的坐标为(2,m)(m>0),则点A的坐标为(2,1+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,通过解直角三角形即可得出结论;(1)由m的值,可找出点C、D的坐标,设出过点C、D的一次函数的解析式为y=ax+b,由点C、D的坐标利用待定系数法即可得出结论.试题解析:(1)设点D的坐标为(2,m)(m>0),则点A的坐标为(2,1+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数的函数图象上,∴,解得:,∴反比例函数的解析式为.(2)∵m=1,∴点A的坐标为(2,2),∴OB=2,AB=2.在Rt△ABO中,OB=2,AB=2,∠ABO=90°,∴OA==,cos∠OAB==.(1))∵m=1,∴点C的坐标为(2,2),点D的坐标为(2,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:,∴经过C、D两点的一次函数解析式为.考点:反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征.20、(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.试题解析:(1)证明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵,方程的两实根为,,且,∴,,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.21、(1);(2)【分析】(1)将1代入原方程,可得关于m的方程,解此方程即可求得答案;(2)利用根与系数的关系列出方程即可求得答案.【详解】(1)方程的根1代入方程得:=0,整理得:=0,∵∴故答案为:(2)方程两个实数根的和为方程两个实数根的积为,依题意得:,即:,分解因式得:解得:或2,当时,原方程为:,方程有实数根;当时,原方程为:,,方程没有实数根,∴不符合题意,舍去;m的值为:【点睛】本题考查了根与系数的关系及求解一元二次方程,熟练掌握一元二次方程根与系数的关系是解题的关键.22、(1)证明见解析;(2)证明见解析;(3).【分析】(1)连接CD,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线;(2)连接BC,根据直径的性质得出∠ABC=90°,根据B是EF的中点得出AB=EF,即∠BAC=∠AFE,则得出三角形相似;(3)根据三角形相似得出,根据AF和CF的长度得出AC的长度,然后根据EF=2AB代入求出AB和EF的长度,最后根据Rt△AEF的勾股定理求出AE的长度.【详解】解:(1)如答图1,连接CD,∵AC是⊙O的直径,∴∠ADC=90°∴∠ADB+∠EDC=90°∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠BAC=∠EAB+∠BAC=90°∴EA是⊙O的切线;(2)如答图2,连接BC,∵AC是⊙O的直径,∴∠ABC=90°.∴∠CBA=∠ABC=90°∵B是EF的中点,∴在Rt△EAF中,AB=BF∴∠BAC=∠AFE∴△EAF∽△CBA.(3)∵△EAF∽△CBA,∴∵AF=4,CF=2,∴AC=6,EF=2AB.∴,解得AB=2∴EF=4∴AE=.【点睛】本题考查切线的判定与性质;三角形相似的判定与性质.23、(1)A(﹣,0),点C的坐标为(0,﹣2);(2)最小值为,点P的坐标为(,﹣)或(﹣,﹣);(3)P(﹣1,﹣1)或(1,1).【分析】(1)令y=0,解方程求出x的值,即可得到点A、B的坐标,令x=0求出y的值,即可得到点C的坐标;(2)根据二次函数图象上点的坐标特征设点P的坐标为(x,x2﹣2),利用勾股定理列式求出OP2,再根据二次函数的最值问题解答;(3)根据二次函数的增减性,点P在第三四象限时,OP≠1,从而判断出OC与OE是对应边,然后确定出点E与点A或点B重合,再根据全等三角形对应角相等可得∠POC=∠POE,然后根据第三、四象限角平分线上的点到角的两边距离相等的坐标特征利用抛物线解析式求解即可.【详解】解:(1)令y=0,则x2﹣2=0,解得x=±,∵点A在点B右边,∴A(,0),令x=0,则y=﹣2,∴点C的坐标为(0,﹣2);(2)∵P为抛物线y=x2﹣2上的动点,∴设点P的坐标为(x,x2﹣2),则OP2=x2+(x2﹣2)2=x4﹣3x2+4=(x2﹣)2+,∴当x2=,即x=±时,OP2最小,OP的值也最小,最小值为,此时,点P的坐标为(,﹣)或(﹣,﹣);(3)∵OP2=(x2﹣)2+,∴点P在第三四象限时,OP≠1,∵△POE和△POC全等,∴OC与OE是对应边,∴∠POC=∠POE,∴点P在第三、四象限角平分线上,①点P在第三象限角平分线上时,y=x,∴x2﹣2=x,解得x1=﹣1,x2=2(舍去),此时,点P(﹣1,﹣1);②点P在第四象限角平分线上时,y=﹣x,∴x2﹣2=﹣x,解得x1=1,x2=﹣2(舍去),此时,点P(1,1),综上所述,P(﹣1,﹣1)或(1,1)时△POE和△POC全等.【点睛】本题是二次函数综合题型,主要利用了抛物线与坐标轴的交点的求解、二次函数的最值问题、全等三角形的性质、难点在于判断出(3)点P在第三、四象限角平分线上.24、【分析】根据弧长公式计算即可.【详解】∵,,∴,∴【点睛】此题考查弧长公式,熟记公式并掌握各字母的意义即可正确解答.25、(1)12种情况;(2)不公平,小亮获胜概率大【分析】(1)依据题意先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可【详解】解:(1)利用列表法的方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024货物赊欠买卖合同样本范文
- 物业保洁承包合同
- 个人借款合同参考
- 2024不可撤销居间合同
- 2024年商业用途日照房屋租赁合同
- 建筑安装分包合同
- 2024的厂房转让合同范文
- 2024承包施工合同范文
- 2024车辆承包经营合同书雇用车辆合同书
- 2024标准版商务咨询服务合同模板
- 中职数学《平面的基本性质》课件
- 尘肺病的知识讲座
- 《上海车展报告》课件
- 大学生生涯规划与职业发展智慧树知到期末考试答案2024年
- 消毒供应室护理查房
- 年产十二万吨天然橙汁食品工厂设计样本
- 消防安全与建筑设计的结合
- 保洁绿化养护管理专项方案
- 提高门诊患者满意度的品管圈课件
- 膀胱疼痛综合症间质性膀胱炎上海第二医科大学课件
- 短波治疗仪的
评论
0/150
提交评论