版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省泉州市石狮市九上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.对于反比例函数,下列说法错误的是()A.它的图像在第一、三象限B.它的函数值y随x的增大而减小C.点P为图像上的任意一点,过点P作PA⊥x轴于点A.△POA的面积是D.若点A(-1,)和点B(,)在这个函数图像上,则<2.若二次函数y=x2+4x+n的图象与x轴只有一个公共点,则实数n的值是()A.1 B.3 C.4 D.63.以下、、、四个三角形中,与左图中的三角形相似的是()A. B. C. D.4.定义新运算:,例如:,,则y=2⊕x(x≠0)的图象是()A. B. C. D.5.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6 B.众数是7 C.中位数是5 D.方差是86.计算的结果是()A. B. C. D.7.一元二次方程x(3x+2)=6(3x+2)的解是()A.x=6 B.x=﹣ C.x1=6,x2=﹣ D.x1=﹣6,x2=8.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=09.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC的度数为()A.110° B.125° C.130° D.140°10.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为()A.7 B.8 C.9 D.1011.若两个相似三角形的周长之比为1∶4,则它们的面积之比为()A.1∶2 B.1∶4 C.1∶8 D.1∶1612.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm二、填空题(每题4分,共24分)13.若,则的值为_______.14.如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y=﹣(x<0)与y=(x>0)的图象上,若▱ABCD的面积为4,则k的值为:_____.15.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=º.16.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为.17.若方程的解为,则的值为_____________.18.在正方形网格中,△ABC的位置如图所示,则sinB的值为______________三、解答题(共78分)19.(8分)已知如图,⊙O的半径为4,四边形ABCD为⊙O的内接四边形,且∠C=2∠A.(1)求∠A的度数.(2)求BD的长.20.(8分)如图,在中,,以为直径作交于点.过点作,垂足为,且交的延长线于点.(1)求证:是的切线;(2)若,,求的长.21.(8分)如图,点E,F,G,H分别位于边长为a的正方形ABCD的四条边上,四边形EFGH也是正方形,AG=x,正方形EFGH的面积为y.(1)当a=2,y=3时,求x的值;(2)当x为何值时,y的值最小?最小值是多少?22.(10分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).(1)求该反比例函数和一次函数的解析式;(2)求△AHO的周长.23.(10分)[问题发现]如图①,在中,点是的中点,点在边上,与相交于点,若,则_____;[拓展提高]如图②,在等边三角形中,点是的中点,点在边上,直线与相交于点,若,求的值.[解决问题]如图③,在中,,点是的中点,点在直线上,直线与直线相交于点,.请直接写出的长.24.(10分)如图,点F为正方形ABCD内一点,△BFC绕点B逆时针旋转后与△BEA重合(1)求△BEF的形状(2)若∠BFC=90°,说明AE∥BF25.(12分)甲、乙两个人在纸上随机写一个-2到2之间的整数(包括-2和2).若将两个人所写的整数相加,那么和是1的概率是多少?26..在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据反比例函数图象与系数的关系解答.【详解】解:A、反比例函数中的>0,则该函数图象分布在第一、三象限,故本选项说法正确.
B、反比例函数中的>0,则该函数图象在每一象限内y随x的增大而减小,故本选项说法错误.
C、点P为图像上的任意一点,过点P作PA⊥x轴于点A.,∴△POA的面积=,故本选项正确.D、∵反比例函数,点A(-1,)和点B(,)在这个函数图像上,则y1<y2,故本选项正确.
故选:B.【点睛】本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;还考查了k的几何意义.2、C【分析】二次函数y=x2+4x+n的图象与轴只有一个公共点,则,据此即可求得.【详解】∵,,,根据题意得:,解得:n=4,故选:C.【点睛】本题考查了抛物线与轴的交点,二次函数(a,b,c是常数,a≠0)的交点与一元二次方程根之间的关系.决定抛物线与轴的交点个数.>0时,抛物线与x轴有2个交点;时,抛物线与轴有1个交点;<0时,抛物线与轴没有交点.3、B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】设小正方形的边长为1,根据勾股定理,所给图形的边分别为,,,所以三边之比为A、三角形的三边分别为、、,三边之比为::,故本选项错误;B、三角形的三边分别为、、,三边之比为,故本选项正确;C、三角形的三边分别为、、,三边之比为,故本选项错误;
D、三角形的三边分别为、、,三边之比为,故本选项错误.
故选:B.【点睛】本题考查了相似三角形的判定,勾股定理的应用,熟练掌握网格结构,观察出所给图形的直角三角形的特点是解题的关键.4、D【分析】根据题目中的新定义,可以写出y=2⊕x函数解析式,从而可以得到相应的函数图象,本题得以解决.【详解】解:由新定义得:,根据反比例函数的图像可知,图像为D.故选D.【点睛】本题考查函数的图象,解答本题的关键是明确题意,利用新定义写出正确的函数解析式,再根据函数的解析式确定答案,本题列出来的是反比例函数,所以掌握反比例函数的图像是关键.5、D【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,1.A.极差,结论错误,故A不符合题意;B.众数为5,7,11,3,1,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,1,11,中位数为7,结论错误,故C不符合题意;D.平均数是,方差.结论正确,故D符合题意.故选D.【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.6、D【分析】根据同底数幂相乘的运算公式进行计算即可.【详解】解:=故选:D.【点睛】本题考查同底数幂相乘的运算,熟练掌握运算公式是解题的关键.7、C【分析】根据因式分解法解一元二次方程即可求出答案.【详解】解:∵x(3x+2)=6(3x+2),∴(x﹣6)(3x+2)=0,∴x=6或x=,故选:C.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.8、C【详解】解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=61,化简整理得,x2﹣9x+8=1.故选C.9、B【解析】解:∵点O为△ABC的外心,∠BOC=140°,∴∠A=70°,∴∠ABC+∠ACB=110°,∵点I为△ABC的内心,∴∠IBC+∠ICB=55°,∴∠BIC=125°.故选B.10、A【分析】分别设出枝干和小分支的数目,列出方程,解方程即可得出答案.【详解】设枝干有x根,则小分支有根根据题意可得:解得:x=7或x=-8(不合题意,舍去)故答案选择A.【点睛】本题考查的是一元二次方程的应用,解题关键是根据题目意思列出方程.11、D【分析】相似三角形的周长比等于相似比,面积比等于相似比的平方.【详解】∵两个相似三角形的周长之比为1∶4∴它们的面积之比为1∶16故选D.【点睛】本题考查相似三角形的性质,本题属于基础应用题,只需学生熟练掌握相似三角形的性质,即可完成.12、C【分析】点D所转过的路径长是一段弧,是一段圆心角为180°,半径为OD的弧,故根据弧长公式计算即可.【详解】解:BD=4,
∴OD=2
∴点D所转过的路径长==2π.
故选:C.【点睛】本题主要考查了弧长公式:.二、填空题(每题4分,共24分)13、【解析】根据等式性质,等号两边同时加1即可解题.【详解】解:∵,∴,即.【点睛】本题考查了分式的计算,属于简单题,熟悉分式的性质是解题关键.14、2【分析】连接OA、OD,如图,利用平行四边形的性质得AD垂直y轴,则利用反比例函数的比例系数k的几何意义得到S△OAE和S△ODE,所以S△OAD=+,,然后根据平行四边形的面积公式可得到▱ABCD的面积=2S△OAD=2,即可求出k的值.【详解】连接OA、OD,如图,∵四边形ABCD为平行四边形,∴AD垂直y轴,∴S△OAE=×|﹣3|=,S△ODE=×|k|,∴S△OAD=+,∵▱ABCD的面积=2S△OAD=2.∴3+|k|=2,∵k>0,解得k=2,故答案为2.【点睛】此题考查平行四边形的性质、反比例函数的性质,反比例函数图形上任意一点向两个坐标轴作垂线构成的矩形面积等于,再与原点连线分矩形为两个三角形,面积等于.15、55【解析】分析:∵∠ACB与∠AOB是所对的圆周角和圆心角,∠ACB=35º,∴∠AOB=2∠ACB=70°.∵OA=OB,∴∠OAB=∠OBA=.16、1:1.【解析】试题分析:∵△ABC与△DEF的相似比为1:1,∴△ABC与△DEF的周长比为1:1.故答案为1:1.考点:相似三角形的性质.17、【分析】根据根与系数的关系可得出、,将其代入式中即可求出结果.【详解】解:∵方程的两根是,
∴、,
∴.
故答案为:.【点睛】本题主要考查了一元二次方程根与系数的关系,牢记如果一元二次方程有两根,那么两根之和等于、两根之积等于是解题的关键.18、【分析】延长BC至D,使BD=4个小正方形的边长,连接AD,先证出△ADB是等腰直角三角形,从而求出∠B=45°,即可求出sinB的值.【详解】解:延长BC至D,使BD=4个小正方形的边长,连接AD由图可知:AD=4个小正方形的边长,且∠ADB=90°∴△ADB是等腰直角三角形∴∠B=45°∴sinB=故答案为:.【点睛】此题考查的是求格点中角的正弦值,掌握等腰直角三角形的定义和45°的正弦值是解决此题的关键.三、解答题(共78分)19、(1)60°;(2).【分析】(1)根据圆内接四边形的性质即可得到结论;(2)连接OB,OD,作OH⊥BD于H根据已知条件得到∠BOD=120°;求得∠OBD=∠ODB=30°,解直角三角形即可得到结论.【详解】(1)∵四边形ABCD为⊙O的内接四边形,∴∠C+∠A=180°,∵∠C=2∠A,∴∠A=60°;(2)连接OB,OD,作OH⊥BD于H∵∠A=60°,∠BOD=2∠A,∴∠BOD=120°;又∵OB=OD,∴∠OBD=∠ODB=30°,∵OH⊥BD于H,在Rt△DOH中,,即,∴,∵OH⊥BD于H,∴.【点睛】此题考查圆的性质,垂径定理,勾股定理,圆周角定理,在圆中求弦长、半径、弦心距三个量中的一个时,通常利用勾股定理与垂径定理进行计算.20、(1)见解析;(2)BD长为1.【分析】(1)连接OD,AD,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;
(2)根据等腰三角形三线合一的性质证得∠BAD=∠BAC=30°,由30°的直角三角形的性质即可求得BD.【详解】(1)证明:连接OD,AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△BAC的中位线,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,∴BD=AB=×10=1,即BD长为1.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、等腰三角形的性质,圆的切线的判定,30°的直角三角形的性质,掌握本题的辅助线的作法是解题的关键.21、(1)x=;(1)当x=a(即E在AB边上的中点)时,正方形EFGH的面积最小,最小的面积为a1.【分析】(1)设正方形ABCD的边长为a,AE=x,则BE=a﹣x,易证△AHE≌△BEF≌△CFG≌△DHG,再利用勾股定理求出EF的长,进而得到正方形EFGH的面积;(1)利用二次函数的性质即可求出面积的最小值.【详解】解:设正方形ABCD的边长为a,AE=x,则BE=a﹣x,∵四边形EFGH是正方形,∴EH=EF,∠HEF=90°,∴∠AEH+∠BEF=90°,∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF,在△AHE和△BEF中,,∴△AHE≌△BEF(AAS),同理可证△AHE≌△BEF≌△CFG≌△DHG,∴AE=BF=CG=DH=x,AH=BE=CF=DG=a﹣x∴EF1=BE1+BF1=(a﹣x)1+x1=1x1﹣1ax+a1,∴正方形EFGH的面积y=EF1=1x1﹣1ax+a1,当a=1,y=3时,1x1﹣4x+4=3,解得:x=;(1)∵y=1x1﹣1ax+a1=1(x﹣a)1+a1,即:当x=a(即E在AB边上的中点)时,正方形EFGH的面积最小,最小的面积为a1.【点睛】本题考查了二次函数的应用,正方形的性质、全等三角形的判定和性质以及二次函数的性质,题目的综合性较强,难度中等.22、(1)一次函数为,反比例函数为;(2)△AHO的周长为12【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)∵tan∠AOH==∴AH=OH=4∴A(-4,3),代入,得k=-4×3=-12∴反比例函数为∴∴m=6∴B(6,-2)∴∴=,b=1∴一次函数为(2)△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.23、[问题发现];[拓展提高];[解决问题]或.【分析】[问题发现]由,可知AD是中线,则点P是△ABC的重心,即可得到2∶3;[拓展提高]过点作交于点,则EF是△ACD的中位线,由平行线分线段成比例,得到,通过变形,即可得到答案;[解决问题]根据题意,可分为两种情况进行讨论,①点D在点C的右边;②点D在点C的左边;分别画出图形,求出BP的长度,即可得到答案.【详解】解:[问题发现]:∵,∴点D是BC的中点,∴AD是△ABC的中线,∵点是的中点,则BE是△ABC的中线,∴点P是△ABC的重心,∴;故答案为:.[拓展提高]:过点作交于点.是的中点,是的中点,∴EF是△ACD的中位线,,,,∴,,即..[解决问题]:∵在中,,,∵点E是AC的中点,∴,∵CD=4,则点D可能在点C的右边和左边两种可能;①当点D在点C的右边时,如图:过点P作PF⊥CD与点F,∵,,∴△ACD∽△PFD,∴,即,∴,∵,,∴△ECB∽△PBF,∴,∵,∴,解得:,∴,,∴;②当点D在点C的左边时,如图:过点P作PF⊥CD与点F,与①同理,可证△ACD∽△PFD,△ECB∽△PBF,∴,,∵,∴,解得:,∴,,∴;∴或.【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例,勾股定理,以及三角形的重心,解题的关键是熟练掌握相似三角形的判定和性质,以及勾股定理解三角形.注意运用分类讨论的思想进行解题.24、(1)等腰直角三角形(2)见解析【分析】(1)利用正方形的性质得BA=BC,∠ABC=90°,然后根据旋转的定义可判断旋转中心为点B,旋转角为90°,根据旋转的性质得∠EBF=∠ABC=90°,BE=BF,则可判断△BEF为等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《市场调查课程考核》课件
- 《电化学催化》课件
- 《小学生说明文》课件
- 单位管理制度集合大合集【职员管理】十篇
- 单位管理制度汇编大合集【职工管理篇】
- 单位管理制度合并汇编职员管理篇
- 《淋巴结断层解剖》课件
- 单位管理制度分享合集人事管理
- 单位管理制度范文大合集人员管理十篇
- 单位管理制度呈现汇编员工管理
- (八省联考)河南省2025年高考综合改革适应性演练 化学试卷(含答案)
- 2025中国电信山东青岛分公司校园招聘高频重点提升(共500题)附带答案详解
- 2025年八省联考高考语文作文真题及参考范文
- 新课标(水平三)体育与健康《篮球》大单元教学计划及配套教案(18课时)
- 开题报告-铸牢中华民族共同体意识的学校教育研究
- 计件工劳务合同范例
- 2024年公交车开通仪式讲话例文(4篇)
- 2024-2025学年八年级上册物理 第五章 透镜以及其应用 测试卷(含答案)
- 《中华人民共和国政府采购法》专题培训
- 《自理理论orem》课件
- 2024年浙江省杭州市下城区教育局所属事业单位招聘学科拔尖人才10人历年管理单位遴选500模拟题附带答案详解
评论
0/150
提交评论