版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省葫芦岛市名校2025届九年级数学第一学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.对于反比例函数,如果当≤≤时有最大值,则当≥8时,有()A.最大值 B.最小值 C.最大值= D.最小值=2.如图,AB是⊙的直径,AC是⊙的切线,A为切点,BC与⊙交于点D,连结OD.若,则∠AOD的度数为()A. B. C. D.3.如图,△ABC是⊙O的内接三角形,∠A=55°,则∠OCB为()A.35° B.45° C.55° D.65°4.若,则代数式的值()A.-1 B.3 C.-1或3 D.1或-35.如图,在中,平分于.如果,那么等于()A. B. C. D.6.已知,下列变形错误的是()A. B. C. D.7.如图,抛物线的对称轴为直线,则下列结论中,错误的是()A. B. C. D.8.如图在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC相似的条件是()A.∠AED=∠B B.∠ADE=∠C C. D.9.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(
)A. B. C. D.10.已知一元二次方程的一般式为,则一元二次方程x2-5=0中b的值为()A.1 B.0 C.-5 D.511.如图,在菱形中,,,是的中点,将绕点逆时针旋转至点与点重合,此时点旋转至处,则点在旋转过程中形成的、线段、点在旋转过程中形成的与线段所围成的阴影部分的面积为()A. B. C. D.12.抛物线关于轴对称的抛物线的解析式为().A. B.C. D.二、填空题(每题4分,共24分)13.反比例函数y=的图象位于第二、四象限,则k的取值范围是_______.14.观察下列各式:;;;则_______________________.15.把抛物线的图像向右平移个单位,再向下平移个单位,所得图像的解析式为,则的值为___________.16.如图,四边形是的内接四边形,若,则的大小为________.17.如图,在平面直角坐标系中,,P是经过O,A,B三点的圆上的一个动点(P与O,B两点不重合),则__________°,__________°.18.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.三、解答题(共78分)19.(8分)[问题发现]如图①,在中,点是的中点,点在边上,与相交于点,若,则_____;[拓展提高]如图②,在等边三角形中,点是的中点,点在边上,直线与相交于点,若,求的值.[解决问题]如图③,在中,,点是的中点,点在直线上,直线与直线相交于点,.请直接写出的长.20.(8分)如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像.(1)试用含a、b的式子表示绿化部分的面积(结果要化简).(2)若a=3,b=2,请求出绿化部分的面积.21.(8分)已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.22.(10分)如下图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交于点.另一边交的延长线于点.(1)观察猜想:线段与线段的数量关系是;(2)探究证明:如图2,移动三角板,使顶点始终在正方形的对角线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形”改为“矩形”,且使三角板的一边经过点,其他条件不变,若、,求的值.23.(10分)如图,为了估算河的宽度,在河对岸选定一个目标作为点A再在河的这边选点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.24.(10分)如图所示,在平面直角坐标系中,抛物线与轴相交于点,点,与轴相交于点,与抛物线的对称轴相交于点.(1)求该抛物线的表达式,并直接写出点的坐标;(2)过点作交抛物线于点,求点的坐标;(3)在(2)的条件下,点在射线上,若与相似,求点的坐标.25.(12分)如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.(1)求证:与相切:(2)若,,求长;(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.26.如图,四边形为正方形,点的坐标为,点的坐标为,反比例函数的图象经过点.(1)的线段长为;点的坐标为;(2)求反比例函数的解析式:(3)若点是反比例函数图象上的一点,的面积恰好等于正方形的面积,求点的坐标.
参考答案一、选择题(每题4分,共48分)1、D【解析】解:由当时有最大值,得时,,,反比例函数解析式为,当时,图象位于第四象限,随的增大而增大,当时,最小值为故选D.2、C【分析】由AC是⊙的切线可得∠CAB=,又由,可得∠ABC=40;再由OD=OB,则∠BDO=40最后由∠AOD=∠OBD+∠OBD计算即可.【详解】解:∵AC是⊙的切线∴∠CAB=,又∵∴∠ABC=-=40又∵OD=OB∴∠BDO=∠ABC=40又∵∠AOD=∠OBD+∠OBD∴∠AOD=40+40=80故答案为C.【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.3、A【分析】首先根据圆周角定理求得∠BOC,然后根据三角形内角和定理和等腰三角形的性质即可求得∠OCB.【详解】解:∵∠A=55°,∴∠BOC=55°×2=110°,∵OB=OC,∴∠OCB=∠OBC=(180°-∠BOC)=35°,故答案为A.【点睛】本题主要考查了圆周角定理、等腰三角形的性质以及三角形的内角和定理,掌握并灵活利用相关性质定理是解答本题的关键.4、B【分析】利用换元法解方程即可.【详解】设=x,原方程变为:,解得x=3或-1,∵≥0,∴故选B.【点睛】本题考查了用换元法解一元二次方程,设=x,把原方程转化为是解题的关键.5、D【分析】先根据直角三角形的性质和角平分线的性质可得,再根据等边对等角可得,最后在中,利用直角三角形的性质即可得.【详解】平分则在中,故选:D.【点睛】本题考查了等腰三角形的性质、角平分线的性质、直角三角形的性质:(1)两锐角互余;(2)所对的直角边等于斜边的一半;根据等腰三角形的性质得出是解题关键.6、B【解析】根据比例式的性质,即可得到答案.【详解】∵⇔,⇔,⇔,⇔,∴变形错误的是选项B.故选B.【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键.7、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】A、由抛物线的开口向下知,与轴的交点在轴的正半轴上,可得,因此,故本选项正确,不符合题意;B、由抛物线与轴有两个交点,可得,故本选项正确,不符合题意;C、由对称轴为,得,即,故本选项错误,符合题意;D、由对称轴为及抛物线过,可得抛物线与轴的另外一个交点是,所以,故本选项正确,不符合题意.故选C.【点睛】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.8、C【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、不能判定△ADE∽△ACB,故C选项正确;D、,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.9、D【解析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为==.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、B【分析】对照一元二次方程的一般形式,根据没有项的系数为0求解即可.【详解】∵一元二次方程的一般式为,对于一元二次方程x2-5=0中没有一次项,故b的值为0,故选:B.【点睛】此题主要考查对一元二次方程的一般形式的认识,掌握住各项系数是解题的关键.11、C【分析】根据菱形的性质可得AD=AB=4,∠DAB=180°-,AE=,然后根据旋转的性质可得:S△ABE=S△ADF,∠FAE=∠DAB=60°,最后根据S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE即可求出阴影部分的面积.【详解】解:∵在菱形中,,,是的中点,∴AD=AB=4,∠DAB=180°-,AE=,∵绕点逆时针旋转至点与点重合,此时点旋转至处,∴S△ABE=S△ADF,∠FAE=∠DAB=60°∴S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE=S扇形DAB―S扇形FAE==故选:C.【点睛】此题考查的是菱形的性质、旋转的性质和扇形的面积公式,掌握菱形的性质定理、旋转的性质和扇形的面积公式是解决此题的关键.12、B【解析】先求出抛物线y=2(x﹣2)2﹣1关于x轴对称的顶点坐标,再根据关于x轴对称开口大小不变,开口方向相反求出a的值,即可求出答案.【详解】抛物线y=2(x﹣2)2﹣1的顶点坐标为(2,﹣1),而(2,﹣1)关于x轴对称的点的坐标为(2,1),所以所求抛物线的解析式为y=﹣2(x﹣2)2+1.故选B.【点睛】本题考查了二次函数的轴对称变换,此图形变换包括x轴对称和y轴对称两种方式.二次函数关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数,顶点位置改变,只要根据关于x轴对称的点坐标特征求出新的顶点坐标,即可确定解析式.二次函数关于y轴对称的图像,其形状不变,开口方向也不变,因此a值不变,但是顶点位置改变,只要根据关于y轴对称的点坐标特征求出新的顶点坐标,即可确定解析式.二、填空题(每题4分,共24分)13、【解析】根据k<0时,反比例函数的图象位于二、四象限,可列出不等式,解之即可得出答案.【详解】∵反比例函数y=的图象位于第二、四象限,∴3k−1<0,解得:.故答案为.【点睛】本题考查了反比例函数的图象和性质.根据反比例函数的图象所在象限列出不等式是解题的关键.14、【分析】由所给式子可知,()()=,根据此规律解答即可.【详解】由题意知()()=,∴.故答案为.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.15、【分析】根据抛物线的平移规律:左加右减,上加下减,得出平移后的抛物线解析式,化为一般形式即可得解.【详解】由题意,得平移后的抛物线为:即∴故答案为:4.【点睛】此题主要考查根据抛物线的平移规律求参数,熟练掌握,即可解题.16、100°【分析】根据圆内接四边形的性质求出∠D的度数,根据圆周角定理计算即可.【详解】∵四边形ABCD是⊙O的内接四边形,
∴∠B+∠D=180°,
∴∠D=180°-130°=50°,
由圆周角定理得,∠AOC=2∠D=100°,
故答案是:100°.【点睛】考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补、同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.17、4545或135【分析】易证△OAB是等腰直角三角形,据此即可求得∠OAB的度数,然后分当P在弦OB所对的优弧上和在弦OB所对的劣弧上,两种情况进行讨论,利用圆周角定理求解.【详解】解:∵O(0,0)、A(0,2)、B(2,0),
∴OA=2,OB=2,
∴△OAB是等腰直角三角形.
∴∠OAB=45°,
当P在弦OB所对的优弧上时,∠OPB=∠OAB=45°,
当P在弦OB所对的劣弧上时,∠OPB=180°-∠OAB=135°.
故答案是:45°,45°或135°.【点睛】本题考查了圆周角定理,正确理解应分两种情况进行讨论是关键.18、【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=.故答案为:.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.三、解答题(共78分)19、[问题发现];[拓展提高];[解决问题]或.【分析】[问题发现]由,可知AD是中线,则点P是△ABC的重心,即可得到2∶3;[拓展提高]过点作交于点,则EF是△ACD的中位线,由平行线分线段成比例,得到,通过变形,即可得到答案;[解决问题]根据题意,可分为两种情况进行讨论,①点D在点C的右边;②点D在点C的左边;分别画出图形,求出BP的长度,即可得到答案.【详解】解:[问题发现]:∵,∴点D是BC的中点,∴AD是△ABC的中线,∵点是的中点,则BE是△ABC的中线,∴点P是△ABC的重心,∴;故答案为:.[拓展提高]:过点作交于点.是的中点,是的中点,∴EF是△ACD的中位线,,,,∴,,即..[解决问题]:∵在中,,,∵点E是AC的中点,∴,∵CD=4,则点D可能在点C的右边和左边两种可能;①当点D在点C的右边时,如图:过点P作PF⊥CD与点F,∵,,∴△ACD∽△PFD,∴,即,∴,∵,,∴△ECB∽△PBF,∴,∵,∴,解得:,∴,,∴;②当点D在点C的左边时,如图:过点P作PF⊥CD与点F,与①同理,可证△ACD∽△PFD,△ECB∽△PBF,∴,,∵,∴,解得:,∴,,∴;∴或.【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例,勾股定理,以及三角形的重心,解题的关键是熟练掌握相似三角形的判定和性质,以及勾股定理解三角形.注意运用分类讨论的思想进行解题.20、(1)5a2+3ab;(2)63.【分析】(1)由长方形面积减去正方形面积表示出绿化面积即可;(2)将a与b的值代入计算即可求出值.【详解】解:(1)根据题意得:(3a+b)(2a+b)-(a+b)2=6a2+5ab+b2-a2-2ab-b2=5a2+3ab;(2)当a=3,b=2时,原式=.【点睛】本题考查了整式的混合运算,熟练掌握整式混合运算的法则是解本题的关键.21、y=1(x﹣1)1+1.【分析】根据题意设抛物线解析式为y=a(x﹣1)1+1,代入(3,10)求解即可.【详解】解:根据题意设抛物线解析式为y=a(x﹣1)1+1,把(3,10)代入得a(3﹣1)1+1=10,解得a=1,所以抛物线解析式为y=1(x﹣1)1+1.【点睛】本题考查了抛物线的问题,掌握抛物线的性质以及解析法、待定系数法是解题的关键.22、(1);(2)成立,证明过程见解析;(3).【分析】(1)利用三角形全等的判定定理与性质即可得;(2)如图(见解析),过点分别作,垂足分别为,证明方法与题(1)相同;(3)如图(见解析),过点分别作,垂足分别为,先同(2)求出,从而可证,由相似三角形的性质可得,再根据平行线的性质和相似三角形的性质求出的值,即可得出答案.【详解】(1),理由如下:由直角三角板和正方形的性质得在和中,;(2)成立,证明如下:如图,过点分别作,垂足分别为,则四边形是矩形由正方形对角线的性质得,为的角平分线则在和中,;(3)如图,过点分别作,垂足分别为同(2)可知,由长方形性质得:,即在和中,.【点睛】本题考查了正方形的性质、矩形的性质、三角形全等的判定定理与性质、相似三角形的判定定理与性质,较难的是题(3),通过作辅助线,构造两个相似三角形是解题关键.23、100米【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.【详解】∵AB⊥BC,EC⊥BC∴∠B=∠C=90°又∵∠ADB=∠EDC∴△ABD∽△ECD∴即∴AB=100答:两岸向的大致距高AB为100米.【点睛】本题考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.24、(1),点;(2)点;(3)或【解析】(1)设抛物线的表达式为,将A、B、C三点坐标代入表达式,解出a、b、c的值即可得到抛物线表达式,同理采用待定系数法求出直线BC解析式,即可求出与对称轴的交点坐标;(2)过点E作EH⊥AB,垂足为H.先证∠EAH=∠ACO,则tan∠EAH=tan∠ACO=,设EH=t,则AH=2t,从而可得到E(-2+2t,t),最后,将点E的坐标代入抛物线的解析式求解即可;(3)先证明,再根据与相似分两种情况讨论,建立方程求出AF,利用三角函数即可求出F点的坐标.【详解】(1)设抛物线的表达式为.把,和代入得,解得,抛物线的表达式,∴抛物线对称轴为设直线BC解析式为,把和代入得,解得∴直线BC解析式为当时,点.(2)如图,过点E作EH⊥AB,垂足为H.∵∠EAB+∠BAC=90°,∠BAC+∠ACO=90°,∴∠EAH=∠ACO.∴tan∠EAH=tan∠ACO=.设EH=t,则AH=2t,∴点E的坐标为(−2+2t,t).将(−2+2t,t)代入抛物线的解析式得:12(−2+2t)2−(−2+2t)−4=t,解得:t=或t=0(舍去
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 给水塑料管施工方案
- 箱梁桥梁施工方案
- 机器人辅助康复技术-深度研究
- 机场设备智能化改造-深度研究
- 大数据安全处理-深度研究
- 地域文学中的空间表达-深度研究
- 泵站前池施工方案
- 农地生态系统服务评估-深度研究
- 人力资源共享服务-深度研究
- 2025年广西金融职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 土地买卖合同参考模板
- 新能源行业市场分析报告
- 2025年天津市政建设集团招聘笔试参考题库含答案解析
- 房地产运营管理:提升项目品质
- 自愿断绝父子关系协议书电子版
- 你划我猜游戏【共159张课件】
- 专升本英语阅读理解50篇
- 中餐烹饪技法大全
- 新型电力系统研究
- 滋补类用药的培训
- 北师大版高三数学选修4-6初等数论初步全册课件【完整版】
评论
0/150
提交评论