版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
厦门灌口中学2025届数学高一下期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知三个内角、、的对边分别是,若则的面积等于()A. B. C. D.2.在长方体中,,,则异面直线与所成角的余弦值为()A. B.C. D.3.已知,则().A. B. C. D.4.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.或5.等比数列中,,则A.20 B.16 C.15 D.106.阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M与两定点A,B的距离之比为,那么点M的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知,,若直线上存在点M满足,则实数c的取值范围是()A. B. C. D.7.已知与均为单位向量,它们的夹角为,那么等于()A. B. C. D.48.已知数列为等差数列,若,则()A. B. C. D.9.点M(4,m)关于点N(n,-3)的对称点为P(6,-9)则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=510.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在四面体A-BCD中,AB=AC=DB=DC=BC,且四面体A-BCD的最大体积为,则四面体A-BCD外接球的表面积为________.12.已知数列,其中,若数列中,恒成立,则实数的取值范围是_______.13.已知是内的一点,,,则_______;若,则_______.14.已知数列满足,,,记数列的前项和为,则________.15.已知线段上有个确定的点(包括端点与).现对这些点进行往返标数(从…进行标数,遇到同方向点不够数时就“调头”往回数).如图:在点上标,称为点,然后从点开始数到第二个数,标上,称为点,再从点开始数到第三个数,标上,称为点(标上数的点称为点),……,这样一直继续下去,直到,,,…,都被标记到点上,则点上的所有标记的数中,最小的是_______.16.某几何体的三视图如图所示,则该几何体的体积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若,求函数有零点的概率;(2)若,求成立的概率.18.已知数列满足.(1)若,证明:数列是等比数列,求的通项公式;(2)求的前项和.19.设二次函数.(1)若对任意实数,恒成立,求实数x的取值范围;(2)若存在,使得成立,求实数m的取值范围.20.在中,求的值.21.已知角的顶点与原点重合,始边与轴的非负半轴重合,终边过点.(1)求的值;(2)已知为锐角,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据三角的面积公式求解.【详解】,故选.【点睛】本题考查三角形的面积计算.三角形有两个面积公式:和,选择合适的进行计算.2、C【解析】
画出长方体,将平移至,则,则即为异面直线与所成角,由余弦定理即可求解.【详解】根据题意,画出长方体如下图所示:将平移至,则即为异面直线与所成角,,由余弦定理可得故选:C【点睛】本题考查了长方体中异面直线的夹角求法,余弦定理在解三角形中的应用,属于基础题.3、C【解析】
分子分母同时除以,利用同角三角函数的商关系化简求值即可.【详解】因为,所以,于是有,故本题选C.【点睛】本题考查了同角三角函数的商关系,考查了数学运算能力.4、D【解析】
作出示意图,再结合两点间的斜率公式,即可求得答案.【详解】,,又直线过点且与线段相交,作图如下:则由图可知,直线的斜率的取值范围是:或.故选:D【点睛】本题借直线与线段的交点问题,考查两点间的斜率公式,考查理解辨析能力,属于中档题.5、B【解析】试题分析:由等比中项的性质可得:,故选择B考点:等比中项的性质6、B【解析】
根据题意设点M的坐标为,利用两点间的距离公式可得到关于的一元二次方程,只需即可求解.【详解】点M在直线上,不妨设点M的坐标为,由直线上存在点M满足,则,整理可得,,所以实数c的取值范围为.故选:B【点睛】本题考查了两点间的距离公式、一元二次不等式的解法,考查了学生分析问题解决问题的能力,属于中档题.7、A【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A.8、D【解析】
由等差数列的性质可得a7=,而tan(a2+a12)=tan(2a7),代值由三角函数公式化简可得.【详解】∵数列{an}为等差数列且a1+a7+a13=4π,∴a1+a7+a13=3a7=4π,解得a7=,∴tan(a2+a12)=tan(2a7)=tan=tan(3π﹣)=﹣tan=﹣故选D.【点睛】本题考查等差数列的性质,涉及三角函数中特殊角的正切函数值的运算,属基础题.9、D【解析】因为点M,P关于点N对称,所以由中点坐标公式可知.10、D【解析】
由半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,求得十二边形的面积,利用面积比的几何概型,即可求解.【详解】由题意,半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,所以该正十二边形的面积为,由几何概型的概率计算公式,可得所求概率,故选D.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
当面ABC面与BCD垂直时,四面体A-BCD的体积最大,根据最大体积为求出四面体的边长,又△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心位于的中点,从而得到半径,即可求解.【详解】如图所示:当面ABC面与BCD垂直时,四面体A-BCD的体积最大为,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心为的中点,又,解得,,,所以四面体A-BCD外接球的半径故四面体A-BCD外接球的表面积为.【点睛】本题考查多面体的外接圆及相关计算,多面体外接圆问题关键在圆心和半径.12、【解析】
由函数(数列)单调性确定的项,哪些项取,哪些项取,再由是最小项,得不等关系.【详解】由题意数列是递增数列,数列是递减数列,存在,使得时,,当时,,∵数列中,是唯一的最小项,∴或,或,或,综上.∴的取值范围是.故答案为:.【点睛】本题考查数列的单调性与最值.解题时楞借助函数的单调性求解.但数列是特殊的函数,它的自变量只能取正整数,因此讨论时与连续函数有一些区别.13、【解析】
对式子两边平方,再利用向量的数量积运算即可;式子两边分别与向量,进行数量积运算,得到关于的方程组,解方程组即可得答案.【详解】∵,∴;∵,∴解得:,∴.故答案为:;.【点睛】本题考查向量数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将向量等式转化为数量关系的方法.14、7500【解析】
讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【点睛】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.15、【解析】
将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,则,令,即可得.【详解】依照题意知,标有2的是1+2,标有3的是1+2+3,……,标有2019的是1+2+3+……+2019,将将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,,令,,解得,故点上的所有标记的数中,最小的是3.【点睛】本题主要考查利用合情推理,分析解决问题的能力.意在考查学生的逻辑推理能力,16、【解析】由三视图知该几何体是一个半圆锥挖掉一个三棱锥后剩余的部分,如图所示,所以其体积为.点睛:求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)求得有零点的条件,运用古典概率的公式,计算可得所求;(2)若,即,画出不等式组表示的区域,计算面积可得所求.【详解】解:(1)函数有零点的条件为,即,,可得事件的总数为,而有零点的个数为,,,,,,共7个,则函数有零点的概率为;(2)若,即,画出的区域,可得成立的概率为.【点睛】本题考查古典概率和几何概率的求法,考查运算能力,属于基础题.18、(1)证明见解析,;(2).【解析】
(1)由条件可得,即,运用等比数列的定义,即可得到结论;运用等比数列的通项公式可得所求通项。(2)数列的求和方法:错位相减法,结合等比数列的求和公式,可得所求的和。【详解】解:(1)证明:由,得,又,,又,所以是首相为1,公比为2的等比数列;,。(2)前项和,,两式相减可得:化简可得【点睛】本题考查利用辅助数列求通项公式,以及错位相减求和,考查学生的计算能力,是一道基础题。19、(1)(2)【解析】
(1)是关于m的一次函数,计算得到答案.(2)易知,讨论和两种情况计算得到答案.【详解】(1)对任意实数,恒成立,即对任意实数恒成立,是关于m的一次函数,,解得或,所以实数x的取值范围是.(2)存在,使得成立,即,显然.(i)当时,要使成立,即需成立,即需成立.,(当且仅当时等号成立),,.(ii)当时,要使成立,即需成立,即需成立,,(当且仅当时等号成立),.综上得实数m的取值范围是.【点睛】本题考查了恒成立问题和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年店铺装修与经营权出租合同
- DB4117T 206-2018 夏玉米集成栽培技术规程
- DB4116T 037-2022 冬油菜生产技术规程
- 2024年建筑项目钢结构施工协议
- 2024年排水沟工程监理服务合同
- 大四个人总结100字(7篇素材参考)
- DB4113T 027-2023 宛花系列鲜食花生栽培技术规程
- DB4107T 484-2021 水稻主要病虫草害综合防治技术规程
- 方案策划范文5篇
- 2024年工程量增加补充简单协议书范本
- 甘肃省黄金矿产资源概况
- 诊所消防安全应急方案
- 译林版一年级上册英语全册课件
- 中小学德育工作指南考核试题及答案
- 净现值NPV分析和总结
- 国网基建各专业考试题库大全-质量专业-中(多选题汇总)
- LTC流程介绍完整版
- 饲料加工系统粉尘防爆安全规程
- 一年级上册美术课件-第11课-花儿寄深情-▏人教新课标
- 植物的象征意义
- 夏商周考古课件 第5章 西周文化(1、2节)
评论
0/150
提交评论