版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题05相似三角形的基本模型(X字型)【模型说明】“X”字模型图形的两个三角形有“对顶角”,再有一个角相等或夹对顶角的两边对应成比例就可以判定这两个三角形相似.图1图2图3图41)“8”字模型,条件:如图1,AB∥CD;结论:△AOB∽△COD⇔eq\f(AB,CD)=eq\f(OA,OC)=eq\f(OB,OD).2)反“8”字模型,条件:如图2,∠A=∠D;结论:△AOB∽△DOC⇔eq\f(AB,CD)=eq\f(OA,OD)=eq\f(OB,OC).3)平行双“8”字模型,条件:如图3,AB∥CD;】结论:4)斜双“8”字模型,条件:如图4,∠1=∠2;结论:△AOD∽△BOC,△AOB∽△DOC.【例题精讲】例1.(基本模型1)如图(1)所示:等边△ABC中,线段AD为其内角角平分线,过D点的直线B1C1⊥AC于C1交AB的延长线于B1.(1)请你探究:,是否都成立?(2)请你继续探究:若△ABC为任意三角形,线段AD为其内角角平分线,请问一定成立吗?并证明你的判断.(3)如图(2)所示Rt△ABC中,∠ACB=90︒,AC=8,BC=,DE∥AC交AB于点E,试求的值.
例2.(基本模型2)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目如图,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=2:1,求AB的长经过数学小组成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2)请回答:∠ADB=
°,AB=
(2)请参考以上解决思路,解决问题:如图3在四边形ABCD中对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=2:1,求DC的长例3.(培优综合1)如图,在中,点D在BC上,,连接AD,,则线段AD的长为.
例4.(培优综合2)如图,在矩形中,分别为边,的中点,与,分别交于点M,N.已知,,则的长为.例5.(与反比例综合)如图,把一个等腰直角三角形放在平面直角坐标系中,∠ACB=90°,点C(-1,0),点B在反比例函数的图像上,且y轴平分∠BAC,则k的值是.例6.(与二次函数综合)如图,抛物线与轴交于,两点,交轴于点,是第一象限内抛物线上的一点且横坐标为.(1)求抛物线的表达式;(2)如图1,连接,交线段于点,若,求的值.(3)如图2,已知抛物线的对称轴交轴于点,与直线,分别交于、两点.试问是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【变式训练1】.如图,在中,,,,点为上一点,连接,为上一点,于点,当时,求的长.【变式训练2】.如图,在中,、分别是、的中点,动点在射线上,交于点,的平分线交于点,当时,.【变式训练3】.如图,在等边边长为6,O是中心;在中,,,.将绕点A按顺时针方向旋转一周.(1)当、分别在、边上,连结、,求的面积;(2)设所在直线与的边或交于点F,当O、D、E三点在一条直线上,求的长;(3)连结,取中点M,连结,的取值范围为_________.【变式训练4】.如图1:抛物线y=ax2+bx﹣4交x轴于点A、B,连接AC、BC,tan∠ABC=1,tan∠BAC=4.(1)抛物线的解析式为;(2)点P在第三象限的抛物线上,连接PC、PA,若点P横坐标为t,△PAC的面积为S,求S与t的函数关系式;(3)如图2,在(2)的条件下,当S=6时,点G为第四象限抛物线上一点,连接PG,CH⊥PG于点H,连接OH,若tan∠OHG,求GH的长.【变式训练5】.【问题背景】如图1,在△ABC中,点D在边BC上且满足∠BAD=∠ACB,求证:BA2=BD•BC;【尝试应用】如图2,在△ABC中,点D在边BC上且满足∠BAD=∠ACB,点E在边AB上,点G在AB的延长线上,延长ED交CG于点F,若3AD=2AC,BE=ED,BG=2,DF=1,求BE的长度;【拓展创新】如图3,在△ABC中,点D在边BC上(AB≠AD)且满足∠ACB=2∠BAD,DH⊥AB垂足为H,若,请直接写出的值________.课后训练1.如图,在中,是边上的中线,是上的一点,且,连结并延长交于点,则等于().2.正方形中,,点是对角线上的一动点,将沿翻折得到,直线交射线于点.(1)当时,求的度数用含的式子表示;(2)点在运动过程中,试探究的值是否发生变化?若不变,求出它的值若变化,请说明理由;(3)若,求的值.3.如图1,在Rt△ABC中,∠ACB=90°,AC=BC=1,D为AB上一点,连接CD,分别过点A、B作AN⊥CD,BM⊥CD.(1)求证:AN=CM;(2)若点D满足BD:AD=2:1,求DM的长;(3)如图2,若点E为AB中点,连接EM,设sin∠NAD=k,求证:EM=k.4.如图,正方形中,为边上任意点,平分交于点.如图1,若点恰好为中点,求证:;
在的条件下,求的值;如图2,延长交的延长线于点,延长交的延长线于点连接当时,求证:.
5.如图,在等边△ABC中,点D、E分别在边AB、BC上,AD=BE,CD与AE交于F.(1)求∠AFD的度数;(2)若BE=m,CE=n.①求的值;(用含有m和n的式子表示)②若=,直接写出的值.6.在图中;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财政部货物类合同管理规定
- 钢琴启蒙老师年终总结
- 煤气检查和使用安全:预防火灾和中毒事故
- 《色彩心理学》课件
- 《船用卸扣》规范
- 进出口业务知识培训
- 抗蠕虫药相关行业投资规划报告范本
- 铁路安全警示教育室
- 防治结核病的内容讲解
- 【初中地理】丰富多彩的世界文化课件+-2024-2025学年湘教版(2024)地理七年级上册
- 广东省东莞市2023-2024学年六年级上学期语文期中试卷(含答案)
- DGTJ08-9-2023 建筑抗震设计标准
- 2024至2030年光纤光缆行业竞争格局分析与投资风险预测报告
- TCOSOCC 018-2024 信息安全技术 数据泄漏防护产品技术要求
- 幼儿园中班语言绘本《换一换》课件
- 国家电网招聘之通信类通关题库(附答案)
- 小小理财师教学课件
- 2024新苏教版一年级数学册第五单元第1课《认识11~19》课件
- 知识产权法(四川师范大学)智慧树知到答案2024年四川师范大学
- 2024义务教育语文课程标准(2022版)考试试题和答案
- 江西省建设项目环境监理技术指南
评论
0/150
提交评论