




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省巴中学市巴中学中学中考考前最后一卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE与△BDF的周长相等.A.1个 B.2个 C.3个 D.4个2.已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(
)A.
B.
C.
D.3.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()A. B. C. D.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1 B.2 C.3 D.45.如图⊙O的直径垂直于弦,垂足是,,,的长为()A. B.4 C. D.86.图中三视图对应的正三棱柱是()A. B. C. D.7.在中,,,,则的值是()A. B. C. D.8.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为()A.80° B.90° C.100° D.120°9.如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是A.5:2 B.3:2 C.3:1 D.2:110.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③ B.①②④ C.①③④ D.①②③④二、填空题(共7小题,每小题3分,满分21分)11.在平面直角坐标系内,一次函数与的图像之间的距离为3,则b的值为__________.12.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.13.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种
第1年
第2年
第3年
第4年
第5年
品种
甲
9.8
9.9
10.1
10
10.2
甲
乙
9.4
10.3
10.8
9.7
9.8
乙
经计算,,试根据这组数据估计_____中水稻品种的产量比较稳定.14.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.15.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.16.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_____枚棋子.17.已知△ABC中,∠C=90°,AB=9,,把△ABC绕着点C旋转,使得点A落在点A′,点B落在点B′.若点A′在边AB上,则点B、B′的距离为_____.三、解答题(共7小题,满分69分)18.(10分)如图所示,一堤坝的坡角,坡面长度米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角,则此时应将坝底向外拓宽多少米?(结果保留到米)(参考数据:,,)19.(5分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).20.(8分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销量(件)
200-2x
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.21.(10分)如图,在直角三角形ABC中,(1)过点A作AB的垂线与∠B的平分线相交于点D(要求:尺规作图,保留作图痕迹,不写作法);(2)若∠A=30°,AB=2,则△ABD的面积为.22.(10分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积23.(12分)解方程式:-3=24.(14分)如图,平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,与反比例函数的图象交于点.求反比例函数的表达式;若点C在反比例函数的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴CD=,∴BD=BC﹣DC=4﹣>1,∴BD>CE,故②正确;∵BC=4,CD=4,∴BC=CD,故③正确;∵AC=BC=4,∠C=90°,∴AB=4,∵△DCE的周长=1+3+2=4+2,由折叠可得,DF=AF,∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2、B【解析】分析:根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛:考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.3、D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.4、D【解析】
由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.5、C【解析】
∵直径AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,设OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故选C.6、A【解析】
由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解【详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.【点睛】本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键.7、D【解析】
首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.【详解】∵∠C=90°,BC=1,AB=4,
∴,∴,故选:D.【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.8、B【解析】
根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.【详解】解:∵将△ABC绕点A顺时针旋转得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故选:B.【点睛】本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.9、C【解析】
求出正六边形和阴影部分的面积即可解决问题;【详解】解:正六边形的面积,
阴影部分的面积,
空白部分与阴影部分面积之比是::1,
故选C.【点睛】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10、D【解析】
根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.二、填空题(共7小题,每小题3分,满分21分)11、或【解析】
设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.【详解】解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,如图所示.
∵直线y=2x-1与x轴交点为C,与y轴交点为A,
∴点A(0,-1),点C(,0),
∴OA=1,OC=,AC==,
∴cos∠ACO==.
∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,
∴∠BAD=∠ACO.
∵AD=3,cos∠BAD==,
∴AB=3.
∵直线y=2x-b与y轴的交点为B(0,-b),
∴AB=|-b-(-1)|=3,
解得:b=1-3或b=1+3.
故答案为1+3或1-3.【点睛】本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键.12、1:4【解析】∵两个相似三角形对应边上的高的比为1∶4,∴这两个相似三角形的相似比是1:4∵相似三角形的周长比等于相似比,∴它们的周长比1:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.13、甲【解析】
根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.【详解】甲种水稻产量的方差是:,乙种水稻产量的方差是:,∴0.02<0.124.∴产量比较稳定的小麦品种是甲.14、5.2【解析】分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.详解:∵平均数为6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差为:.点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.15、8【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S阴影==8,故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.16、4n+2【解析】∵第1个有:6=4×1+2;第2个有:10=4×2+2;第3个有:14=4×3+2;……∴第1个有:4n+2;故答案为4n+217、4【解析】
过点C作CH⊥AB于H,利用解直角三角形的知识,分别求出AH、AC、BC的值,进而利用三线合一的性质得出AA'的值,然后利用旋转的性质可判定△ACA'∽△BCB',继而利用相似三角形的对应边成比例的性质可得出BB'的值.【详解】解:过点C作CH⊥AB于H,
∵在Rt△ABC中,∠C=90,cosA=,
∴AC=AB•cosA=6,BC=3,
在Rt△ACH中,AC=6,cosA=,
∴AH=AC•cosA=4,
由旋转的性质得,AC=A'C,BC=B'C,
∴△ACA'是等腰三角形,因此H也是AA'中点,
∴AA'=2AH=8,
又∵△BCB'和△ACA'都为等腰三角形,且顶角∠ACA'和∠BCB'都是旋转角,
∴∠ACA'=∠BCB',
∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案为:4.【点睛】此题考查了解直角三角形、旋转的性质、勾股定理、等腰三角形的性质、相似三角形的判定与性质,解答本题的关键是得出△ACA'∽△BCB'.三、解答题(共7小题,满分69分)18、6.58米【解析】试题分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE﹣BE即可求解.试题解析:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.考点:解直角三角形的应用-坡度坡角问题.19、(6+)米【解析】
根据已知的边和角,设CQ=x,BC=QC=x,PC=BC=3x,根据PQ=BQ列出方程求解即可.【详解】解:延长PQ交地面与点C,由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,则电线杆PQ高为(6+)米.【点睛】此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.20、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】
(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【详解】(1)当1≤x<50时,,当50≤x≤90时,,综上所述:.(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解,结合函数自变量取值范围解得,解,结合函数自变量取值范围解得所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3.二次函数和一次函数的性质;4.分类思想的应用.21、(1)见解析(2)【解析】
(1)分别作∠ABC的平分线和过点A作AB的垂线,它们的交点为D点;(2)利用角平分线定义得到∠ABD=30°,利用含30度的直角三角形三边的关系得到AD=AB=,然后利用三角形面积公式求解.【详解】解:(1)如图,点D为所作;(2)∵∠CAB=30°,∴∠ABC=60°.∵BD为角平分线,∴∠ABD=30°.∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面积=×2×=.故答案为.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形面积公式.22、(1),N(3,6);(2)y=-x+2,S△OMN=3.【解析】
(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.【详解】解:(1)∵点M是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创造动力的激励方案3篇
- 出国旅行行程单确认3篇
- 取消承包协议3篇
- 劳务纯承包保险要求3篇
- 忠诚誓言我会守护我们的婚姻3篇
- 定制婚礼服务协议3篇
- 代缴契税委托书范文3篇
- 工程造价审计委托书3篇
- 毛皮服装设计中的传统文化融入考核试卷
- 租赁合同的法律合规性与合同管理考核试卷
- 美国加征关税从多个角度全方位解读关税课件
- “皖南八校”2024-2025学年高一第二学期期中考试-英语(译林版)及答案
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 【MOOC】机械原理-西北工业大学 中国大学慕课MOOC答案
- 一种基于STM32的智能门锁系统的设计-毕业论文
- 《运营管理》案例库
- 煤矿安全监控系统设备管理报废制度
- 机关事业单位退休人员养老金领取资格确认表
- 第五届“国药工程杯”全国大学生制药工程设计竞赛
- 柔性主动防护网分项工程质量检验评定表
- 中机2015~2016年消防系统维保养护年度总结报告
评论
0/150
提交评论