2023-2024学年山东省邹平双语校中考一模数学试题含解析_第1页
2023-2024学年山东省邹平双语校中考一模数学试题含解析_第2页
2023-2024学年山东省邹平双语校中考一模数学试题含解析_第3页
2023-2024学年山东省邹平双语校中考一模数学试题含解析_第4页
2023-2024学年山东省邹平双语校中考一模数学试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省邹平双语校中考一模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差2.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40° B.45° C.50° D.60°3.函数与在同一坐标系中的大致图象是()A、B、C、D、4.下列实数中,无理数是()A.3.14 B.1.01001 C. D.5.下列命题是真命题的是()A.过一点有且只有一条直线与已知直线平行B.对角线相等且互相垂直的四边形是正方形C.平分弦的直径垂直于弦,并且平分弦所对的弧D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形6.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣17.如图,直线a,b被直线c所截,若a∥b,∠1=50°,∠3=120°,则∠2的度数为()A.80° B.70° C.60° D.50°8.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤9.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是()A. B. C. D.10.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85° B.105° C.125° D.160°11.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20° B.30° C.45° D.50°12.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是()A.50° B.60° C.70° D.80°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.两个反比例函数y=kx和y=1x在第一象限内的图象如图所示,点P在y=kx的图象上,PC⊥x轴于点C,交14.计算:|﹣3|+(﹣1)2=.15.分式与的最简公分母是_____.16.分式方程x2x-1=1-217.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.18.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为_____cm1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).20.(6分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.求证:△ABF≌△CDE;如图,若∠1=65°,求∠B的大小.21.(6分)先化简,再求值:,其中x满足x2-2x-2=0.22.(8分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)23.(8分)某市旅游部门统计了今年“五•一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:(1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;(3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?24.(10分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.25.(10分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则CG+9=______.(直接写出答案).26.(12分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.27.(12分)如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm11.522.533.54y/cm03.7______3.83.32.5______(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为______cm.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】

根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、C【解析】分析:根据两直线平行,同位角相等可得再根据三角形内角与外角的性质可得∠C的度数.详解:∵AB∥CD,∴∵∴故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.3、D.【解析】试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.故选D.考点:一次函数和反比例函数的图象.4、C【解析】

先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【详解】A、3.14是有理数;B、1.01001是有理数;C、是无理数;D、是分数,为有理数;故选C.【点睛】本题主要考查无理数的定义,属于简单题.5、D【解析】

根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.6、A【解析】

根据绝对值和数的0次幂的概念作答即可.【详解】原式=1+1=2故答案为:A.【点睛】本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.7、B【解析】

直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案.【详解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠4的度数是解题关键.8、D【解析】

①首先利用已知条件根据边角边可以证明△APD≌△AEB;

②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;

③利用全等三角形的性质和对顶角相等即可判定③说法正确;

④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;

⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【详解】由边角边定理易知△APD≌△AEB,故①正确;

由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,

所以∠BEP=90°,

过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,

在△AEP中,由勾股定理得PE=,

在△BEP中,PB=,PE=,由勾股定理得:BE=,

∵∠PAE=∠PEB=∠EFB=90°,AE=AP,

∴∠AEP=45°,

∴∠BEF=180°-45°-90°=45°,

∴∠EBF=45°,

∴EF=BF,

在△EFB中,由勾股定理得:EF=BF=,

故②是错误的;

因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;

由△APD≌△AEB,

∴PD=BE=,

可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;

连接BD,则S△BPD=PD×BE=,

所以S△ABD=S△APD+S△APB+S△BPD=2+,

所以S正方形ABCD=2S△ABD=4+.

综上可知,正确的有①③⑤.故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.9、C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.10、C【解析】

首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.11、D【解析】

根据两直线平行,内错角相等计算即可.【详解】因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.12、C【解析】

连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。【详解】连接BC.∵PA,PB是圆的切线∴在四边形中,∵∴∵所以∵是直径∴∴故答案选C.【点睛】本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。二、填空题:(本大题共6个小题,每小题4分,共24分.)13、①②④.【解析】①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为12②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.故一定正确的是①②④14、4.【解析】

|﹣3|+(﹣1)2=4,故答案为4.15、3a2b【解析】

利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【详解】分式与的最简公分母是3a2b.故答案为3a2b.【点睛】本题考查最简公分母,解题的关键是掌握求最简公分母的方法.16、x=﹣1.【解析】试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:去分母得:x=2x﹣1+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.考点:解分式方程.17、4.1【解析】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案为4.1.18、11π﹣.【解析】

阴影部分的面积=扇形ECF的面积-△ACD的面积-△OCM的面积-扇形AOM的面积-弓形AN的面积.【详解】解:连接OM,ON.∴OM=3,OC=6,∴∴∴扇形ECF的面积△ACD的面积扇形AOM的面积弓形AN的面积△OCM的面积∴阴影部分的面积=扇形ECF的面积−△ACD的面积−△OCM的面积−扇形AOM的面积−弓形AN的面积故答案为.【点睛】考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)B'的坐标为(,3);(1)见解析;(3)﹣1.【解析】

(1)设A'B'与x轴交于点H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)证明∠BPA'=90即可;(3)作AB的中点M(1,),连接MP,由∠APB=90°,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM⊥x轴时,点P纵坐标的最小值为﹣1.【详解】(Ⅰ)如图1,设A'B'与x轴交于点H,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴点B'的坐标为(,3);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为.如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).∴当PM⊥x轴时,点P纵坐标的最小值为﹣1.【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.20、(1)证明见解析;(2)50°.【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.试题解析:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.21、【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再由x2-2x-2=0得x2=2x+2=2(x+1),整体代入计算可得.详解:原式===,∵x2-2x-2=0,∴x2=2x+2=2(x+1),则原式=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22、5.5米【解析】

过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.【详解】解:过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中,∠CAD=30°,则AD=CD=x.在Rt△BCD中,∠CBD=45°,则BD=CD=x.由题意得,x﹣x=4,解得:.答:生命所在点C的深度为5.5米.23、(1)60人;(2)144°,补全图形见解析;(3)15万人.【解析】

(1)用B景点人数除以其所占百分比可得;(2)用360°乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;(3)用总人数乘以样本中D景点人数所占比例【详解】(1)今年“五•一”放假期间该市这四个景点共接待游客的总人数为18÷30%=60万人;(2)扇形统计图中景点A所对应的圆心角的度数是360°×=144°,C景点人数为60﹣(24+18+10)=8万人,补全图形如下:(3)估计选择去景点D旅游的人数为90×=15(万人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)甲种材料每千克25元,乙种材料每千克35元.(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低.【解析】试题分析:(1)、首先设甲种材料每千克x元,乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60-a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.试题解析:(1)设甲种材料每千克x元,乙种材料每千克y元,依题意得:x+y=602y+3y=155解得:答:甲种材料每千克25元,乙种材料每千克35元.(2)生产B产品a件,生产A产品(60-a)件.依题意得:(25×4+35×1)(60-a)+(35×3+25×3)a≤10000a>38解得:∵a的值为非负整数∴a=39、40、41、42∴共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件(3)、答:生产A产品21件,B产品39件成本最低.设生产成本为W元,则W与a的关系式为:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500∵k=55>0∴W随a增大而增大∴当a=39时,总成本最低.考点:二元一次方程组的应用、不等式组的应用、一次函数的应用.25、(1)证明见解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.【解析】

(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;

(2)只要证明△AEF∽△ACB,可得解决问题;

(3)①分三种情形分别求解即可解决问题;

②只要证明△CFG∽△HFA,可得=,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∴,∴y=x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论