版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,在边上满足,为的中点,则().A. B. C. D.2.已知向量,,若,则()A. B. C.-8 D.83.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件4.若与互为共轭复数,则()A.0 B.3 C.-1 D.45.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是()A.甲班的数学成绩平均分的平均水平高于乙班B.甲班的数学成绩的平均分比乙班稳定C.甲班的数学成绩平均分的中位数高于乙班D.甲、乙两班这5次数学测试的总平均分是1037.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A. B. C. D.8.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分不必要条件9.在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为()A. B. C. D.10.已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()A. B. C. D.11.已知随机变量服从正态分布,且,则()A. B. C. D.12.数列满足:,则数列前项的和为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则=______,=______.14.(5分)如图是一个算法的流程图,若输出的值是,则输入的值为____________.15.在三棱锥P-ABC中,,,,三个侧面与底面所成的角均为,三棱锥的内切球的表面积为_________.16.已知数列的前项和为,,,,则满足的正整数的所有取值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M18.(12分)为了解网络外卖的发展情况,某调查机构从全国各城市中抽取了100个相同等级地城市,分别调查了甲乙两家网络外卖平台(以下简称外卖甲、外卖乙)在今年3月的订单情况,得到外卖甲该月订单的频率分布直方图,外卖乙该月订单的频数分布表,如下图表所示.订单:(单位:万件)频数1223订单:(单位:万件)频数402020102(1)现规定,月订单不低于13万件的城市为“业绩突出城市”,填写下面的列联表,并根据列联表判断是否有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.业绩突出城市业绩不突出城市总计外卖甲外卖乙总计(2)由频率分布直方图可以认为,外卖甲今年3月在全国各城市的订单数(单位:万件)近似地服从正态分布,其中近似为样本平均数(同一组数据用该区间的中点值作代表),的值已求出,约为3.64,现把频率视为概率,解决下列问题:①从全国各城市中随机抽取6个城市,记为外卖甲在今年3月订单数位于区间的城市个数,求的数学期望;②外卖甲决定在今年3月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国各月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市不开展营销活动,若每按一件外卖订单平均可获纯利润5元,但每件外卖平均需送出红包2元,则外卖甲在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?附:①参考公式:,其中.参考数据:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,则,.19.(12分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn.20.(12分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.21.(12分)已知函数.(1)求函数的单调区间;(2)若,证明.22.(10分)已知函数f(x)ax﹣lnx(a∈R).(1)若a=2时,求函数f(x)的单调区间;(2)设g(x)=f(x)1,若函数g(x)在上有两个零点,求实数a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由,可得,,再将代入即可.【详解】因为,所以,故.故选:B.【点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.2、B【解析】
先求出向量,的坐标,然后由可求出参数的值.【详解】由向量,,则,,又,则,解得.故选:B【点睛】本题考查向量的坐标运算和模长的运算,属于基础题.3、D【解析】
由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.4、C【解析】
计算,由共轭复数的概念解得即可.【详解】,又由共轭复数概念得:,.故选:C【点睛】本题主要考查了复数的运算,共轭复数的概念.5、C【解析】
根据充分条件和必要条件的定义结合对数的运算进行判断即可.【详解】∵a,b∈(1,+∞),∴a>b⇒logab<1,logab<1⇒a>b,∴a>b是logab<1的充分必要条件,故选C.【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.6、D【解析】
计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案.【详解】由题意可得甲班的平均分是104,中位数是103,方差是26.4;乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确.因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误.故选:.【点睛】本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力.7、A【解析】
求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,求出等式左边式子的范围,将等式右边代入,从而求解.【详解】解:由题意可得,焦点F(1,0),准线方程为x=−1,
过点P作PM垂直于准线,M为垂足,
由抛物线的定义可得|PF|=|PM|=x+1,
记∠KPF的平分线与轴交于
根据角平分线定理可得,,当时,,当时,,,综上:.故选:A.【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.8、A【解析】
试题分析:α⊥β,b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A.考点:充分条件、必要条件.9、B【解析】
依据线性约束条件画出可行域,目标函数恒过,再分别讨论的正负进一步确定目标函数与可行域的基本关系,即可求解【详解】作出不等式对应的平面区域,如图所示:其中,直线过定点,当时,不等式表示直线及其左边的区域,不满足题意;当时,直线的斜率,不等式表示直线下方的区域,不满足题意;当时,直线的斜率,不等式表示直线上方的区域,要使不等式组所表示的平面区域内存在点,使不等式成立,只需直线的斜率,解得.综上可得实数的取值范围为,故选:B.【点睛】本题考查由目标函数有解求解参数取值范围问题,分类讨论与数形结合思想,属于中档题10、B【解析】
先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.【点睛】本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.11、C【解析】
根据在关于对称的区间上概率相等的性质求解.【详解】,,,.故选:C.【点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量服从正态分布,则.12、A【解析】分析:通过对an﹣an+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可.详解:∵,∴,又∵=5,∴,即,∴,∴数列前项的和为,故选A.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.二、填空题:本题共4小题,每小题5分,共20分。13、10【解析】
①根据换底公式计算即可得解;②根据同底对数加法法则,结合①的结果即可求解.【详解】①由题:,则;②由①可得:.故答案为:①1,②0【点睛】此题考查对数的基本运算,涉及换底公式和同底对数加法运算,属于基础题目.14、或【解析】
依题意,当时,由,即,解得;当时,由,解得或(舍去).综上,得或.15、【解析】
先确定顶点在底面的射影,再求出三棱锥的高以及各侧面三角形的高,利用各个面的面积和乘以内切球半径等于三棱锥的体积的三倍即可解决.【详解】设顶点在底面上的射影为H,H是三角形ABC的内心,内切圆半径.三个侧面与底面所成的角均为,,,的高,,设内切球的半径为R,∴,内切球表面积.故答案为:.【点睛】本题考查三棱锥内切球的表面积问题,考查学生空间想象能力,本题解题关键是找到内切球的半径,是一道中档题.16、20,21【解析】
由题意知数列奇数项和偶数项分别为等差数列和等比数列,则根据为奇数和为偶数分别算出求和公式,代入数值检验即可.【详解】解:由题意知数列的奇数项构成公差为的等差数列,偶数项构成公比为的等比数列,则;.当时,,.当时,,.由此可知,满足的正整数的所有取值为20,21.故答案为:20,21【点睛】本题考查等差数列与等比数列通项与求和公式,是综合题,分清奇数项和偶数项是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)p=4;(2)OA⋅【解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)⋅x试题解析:(1)由y=2x-2x2=2py设M1(x1,因为直线y=p2平分∠M所以y1-p所以4-(2+p2)⋅x1+x(2)由(1)知抛物线方程为x2=8y,且x1+x设M3(x3,x328所以x2+x整理得:x2由B,M3,②式两边同乘x2得:x即:16x由①得:x2x3即:16(x2+所以OA⋅考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p218、(1)见解析,有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①4.911②100万元.【解析】
(1)根据频率分布直方图与频率分布表,易得两个外卖平台中月订单不低于13万件的城市数量,即可完善列联表.通过计算的观测值,即可结合临界值作出判断.(2)①先根据所给数据求得样本平均值,根据所给今年3月订单数区间,并由及求得,.结合正态分布曲线性质可求得,再由二项分布的数学期望求法求解.②订单数低于7万件的城市有和两组,根据分层抽样的性质可确定各组抽取样本数.分别计算出开展营销活动与不开展营销活动的利润,比较即可得解.【详解】(1)对于外卖甲:月订单不低于13万件的城市数量为,对于外卖乙:月订单不低于13万件的城市数量为.由以上数据完善列联表如下图,业绩突出城市业绩不突出城市总计外卖甲4060100外卖乙5248100总计92108200且的观测值为,∴有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①样本平均数,故==,,的数学期望,②由分层抽样知,则100个城市中每月订单数在区间内的有(个),每月订单数在区间内的有(个),若不开展营销活动,则一个月的利润为(万元),若开展营销活动,则一个月的利润为(万元),这100个城市中开展营销活动比不开展每月多盈利100万元.【点睛】本题考查了频率分布直方图与频率分布表的应用,完善列联表并计算的观测值作出判断,分层抽样的简单应用,综合性强,属于中档题.19、(Ⅰ)(Ⅱ)证明见解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,对分奇偶讨论,即可得;(Ⅱ)由(Ⅰ)得,用错位相减法求出,运用分析法证明即可.【详解】(Ⅰ),当为奇数时,,又由,得,当为偶数时,,又由a2=3,得,;(Ⅱ)由(1)得,则①②①-②可得:,,若证明Sn,则需要证明,又,即证明,即证,又显然成立,故Sn得证.【点睛】本题主要考查了由递推公式求通项公式,错位相减法求前项和,分析法证明不等式,考查了分类讨论的思想,考查了学生的运算求解与逻辑推理能力.20、(1),(2)侧面积取得最大值时,等腰三角形的腰的长度为【解析】试题分析:(1)由条件,,,所以S,;(2)令,所以得,通过求导分析,得在时取得极大值,也是最大值.试题解析:(1)设交于点,过作,垂足为,在中,,,在中,,所以S,(2)要使侧面积最大,由(1)得:令,所以得,由得:当时,,当时,所以在区间上单调递增,在区间上单调递减,所以在时取得极大值,也是最大值;所以当时,侧面积取得最大值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政主管面试常见问题及高分答案
- 定扭矩气板机项目可行性分析报告范文
- 环境医学视角治未病个体化方案调整
- 京东商城运营团队面试题库
- 产品经理业务一部经理考试题集含答案
- 上汽集团投资者关系经理职业资格认证考试大纲含答案
- 深度解析(2026)《GBT 18955-2003木工刀具安全 铣刀、圆锯片》(2026年)深度解析
- 特殊医疗场景应急物资储备方案
- 深度解析(2026)GBT 18717.2-2002用于机械安全的人类工效学设计 第2部分人体局部进入机械的开口尺寸确定原则
- 软件工程师高级职位面试题
- 带你听懂中国传统音乐知到智慧树期末考试答案题库2025年广州大学
- 江苏省2025年中职职教高考文化统考数学试题答案
- 不锈钢清洁操作流程培训
- 浙江省消防技术规范难点问题 操作技术指南(2020 版)
- 精装修监理实施细则
- 急危重症护理培训心得
- 大学体育-瑜伽学习通超星期末考试答案章节答案2024年
- 超星尔雅学习通《文献信息检索与利用(成都航空职业技术学院)》2024章节测试答案
- 【未知机构】华为公司战略规划和落地方法之五看三定工具解析
- 企业微信指导手册管理员版
- (完整word版)劳动合同书(电子版)正规范本(通用版)
评论
0/150
提交评论